[1]申华珍,王春梅*,庞国伟,等.黄土切沟沟头位置地形临界模型及不同土地利用下的参数差异[J].山地学报,2024,(2):174-184.[doi:10.16089/j.cnki.1008-2786.000814]
 SHEN Huazhen,WANG Chunmei*,PANG Guowei,et al.Topographical Critical Model of Loess Gully Head and Its Parameter Determination in Different Land Use Contexts[J].Mountain Research,2024,(2):174-184.[doi:10.16089/j.cnki.1008-2786.000814]
点击复制

黄土切沟沟头位置地形临界模型及不同土地利用下的参数差异
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第2期
页码:
174-184
栏目:
山地环境
出版日期:
2024-06-15

文章信息/Info

Title:
Topographical Critical Model of Loess Gully Head and Its Parameter Determination in Different Land Use Contexts
文章编号:
1008-2786-(2024)2-174-11
作者:
申华珍王春梅*庞国伟龙永清王 雷王 强杨勤科
(西北大学 a. 城市与环境学院; b. 陕西省地表系统与环境承载力重点实验室,西安 710127; c. 旱区生态水文与灾害防治国家林业和草原局重点实验室,西安 710048)
Author(s):
SHEN HuazhenWANG Chunmei*PANG GuoweiLONG YongqingWANG LeiWANG QiangYANG Qinke
(a. College of Urban and Environmental Sciences; b. Shaanxi Key Laboratory Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China; c. Key Laboratory of National Forestry and Grassland Administration on Ecological Hydrology and Disaster Prevention in Arid Regions, Xi'an 710048, China)
关键词:
无人机 切沟 地形临界 土地利用 黄土高原
Keywords:
Unmanned Aerial Vehicle(UAV) gully topographical criticality land use the Loess Plateau
分类号:
S157.1
DOI:
10.16089/j.cnki.1008-2786.000814
文献标志码:
A
摘要:
切沟侵蚀是黄土高原地区重要侵蚀形式。切沟的发生存在一定的地形临界,坡度-汇水面积(Slope-Area)临界模型是切沟沟头位置模拟与预测的常用方法,对模型参数的空间分异及其不同土地利用下的参数差异的规律认识不足极大限制了该临界模型的实际应用。本研究以典型黄土丘陵沟壑区陕北岔巴沟流域为研究区,采用无人机航摄并结合野外实测,研究了S-A临界模型参数的空间分异及其不同土地利用下的参数差异。结果表明:(1)切沟沟头坡度从上游到下游呈递增趋势,沟头汇水面积呈递减趋势。(2)岔巴沟流域S-A临界模型切沟发生的临界常数a值和模型指数b从上游到下游变化不大,均呈轻微递增趋势,流域内切沟沟头发生的临界模型空间分异性不明显。岔巴沟流域上游、中游和下游的切沟沟头S-A临界模型参数a分别为1.006、1.128和1.157,参数b分别为0.197、0.203和0.209。(3)切沟沟头S-A临界模型参数受土地利用类型的影响较大。坡耕地切沟S-A临界模型参数a和b分别为0.810和0.159,林草地切沟临界模型参数a和b分别为2.007和0.341。林草地切沟沟头S-A临界模型常数a是坡耕地的近2.5倍,指数b是坡耕地的近2倍。本研究深化了对黄土丘陵沟壑区切沟沟头发生的地形临界条件的认识,提升了S-A临界模型在黄土切沟治理实践中的可用性,将有效支撑黄土高原侵蚀精准治理。
Abstract:
Gully erosion is a primary form of land degradation in the Loess Plateau region. There is a certain topographic criticality to the occurrence of loess gully erosion at gully head. S-A(Slope-Area)critical model is a common method for simulating and predicting gully head development; however, the insufficient understanding in the spatial differentiation of the model parameters and improper parameter determining in different land use contexts inhibited the model from extensive application.
In this study, Unmanned Aerial Vehicle(UAV)photography combined with field survey was used to investigate the Chabagou valley, a typical loess hilly area in northern Shaanxi, China for examination of S-A critical model regarding the spatial differentiation of the model parameters and parameter determination in different land use contexts.
(1)The slope gradients at gully heads increased from upstream to downstream, while the drainage area of gully heads showed a decreasing trend.
(2)As the S-A critical model for the Chabagou valley, critical constant a were 1.006, 1.128, and 1.157 at gully heads in the upstream, midstream, and downstream of the valley, respectively, and correspondingly model exponent b were 0.197, 0.203, and 0.209, respectively. It was noticeable that both critical constant a and model exponent b values did not vary to a great extent, exhibiting a slight increasing trend from upstream to downstream, without significant spatial differentiation in model parameters at gully heads.
(3)S-A critical model parameters for gully heads was subject to land use types. It had 0.810, 2.007 for a and b in sloping farmland, respectively, and 0.159 and 0.341 for a and b in forest-grass land, respectively. The critical constant a for forest-grass land was nearly 2.5 times higher than that of sloping farmland, while the exponent b was nearly 2 times higher that of sloping cropland.
This study deepens the understanding of the topographic critical conditions for the occurrence of gully erosion in loess hilly gullies, and enhances the availability of S-A critical model in loess erosion management practice, and would effectively support the precise management of erosion on the Loess Plateau.

参考文献/References:

[1] 朱显谟. 黄土高原的综合治理[J]. 土壤通报, 1980(2): 11-15. [ZHU Xianmo. Comprehensive management of Loess Plateau [J]. Chinese Journal of Soil Science,1980(2): 11-15] DOI: 10.19336/j.cnki.trtb.1980.02.001
[2] 朱显谟. 黄土区土壤侵蚀的分类[J]. 土壤学报, 1956, 4(2): 99-115. [ZHU Xianmo. Classification on the soil erosion in the loess region [J]. Acta Pedologica Sinica, 1956, 4(2): 99-115]
[3] 刘元保, 朱显谟, 周佩华, 等. 黄土高原坡面沟蚀的类型及其发生发展规律[J]. 中国科学院西北水土保持研究所集刊, 1988, 7(1): 9-18. [LIU Yuanbao, ZHU Xianmo, ZHOU Peihua, et al. The laws of hillslope channel erosion occurence and development on Loess Plateau [J]. Memoir of NISWC, Academia Sinica, 1988, 7(1): 9-18]
[4] 伍永秋, 刘宝元. 切沟、切沟侵蚀与预报[J]. 应用基础与工程科学学报, 2000, 8(2): 134-142. [WU Yongqiu, LIU Baoyuan. Gully, gully erosion and prediction [J]. Journal of Basic Science and Engineering, 2000, 8(2): 134-142] DOI: 10.16058/j.issn.1005-0930.2000.02.004
[5] 罗来兴. 划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J]. 地理学报, 1956, 22(3): 201-222. [LUO Laixing. A tentative classification of landforms in the Loess Plateau [J]. Acta Geographica Sinica, 1956, 22(3): 201-222] DOI: 10.11821/xb195603002
[6] 刘宝元, 杨扬, 陆绍娟. 几个常用土壤侵蚀术语辨析及其生产实践意义[J]. 中国水土保持科学, 2018, 16(1): 9-16. [LIU Baoyuan, YANG Yang, LU Shaojuan. Discriminations on common soil erosion terms and their implications for soil and water conservation [J]. Science of Soil and Water Conservation, 2018, 16(1): 9-16] DOI: 10.16843/j.sswc.2018.01.002
[7] 杨丽娟, 王春梅, 张春妹, 等. 基于遥感影像研究极端暴雨条件下新成切沟发生发展规律[J]. 农业工程学报, 2022, 38(6): 96-104. [YANG Lijuan, WANG Chunmei, ZHANG Chunmei, et al. Occurrence and development of newly formed gullies under extreme rainstorm conditions using remote sensing images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(6): 96-104] DOI: 10.11975/j.issn.1002-6819.2022.06.011
[8] 刘晓冰, 张兴义. 沟道侵蚀的多样性和发生过程及研究展望[J]. 土壤与作物, 2018, 7(2): 90-102. [LIU Xiaobing, ZHANG Xingyi. Gully erosion: Diversity, processes and prospects [J]. Soils and Crops, 2018, 7(2): 90-102] DOI: 10.11689/j.issn.2095-2961.2018.02.001
[9] 张光辉. 切沟侵蚀研究进展与展望[J]. 水土保持学报, 2020, 34(5): 1-13. [ZHANG Guanghui. Advances and prospects for gully erosion researches [J]. Journal of Soil and Water Conservation, 2020, 34(5): 1-13] DOI: 10.13870/j.cnki.stbcxb.2020.05.001
[10] GUDINO-ELIZONDO N, BIGGS T W, CASTILLO C, et al. Measuring ephemeral gully erosion rates and topographical thresholds in an urban watershed using unmanned aerial systems and structure from motion photogrammetric techniques [J]. Land Degradation and Development, 2018, 29(6): 1896-1905. DOI: 10.1002/ldr.2976
[11] VANMAERCKE M, POESEN J, VAN MELE B, et al. How fast do gully headcuts retreat? [J]. Earth-Science Reviews, 2016, 154: 336-355. DOI: 10.1016/j.earscirev.2016.01.009
[12] 张光辉, 杨扬, 符素华, 等. 切沟侵蚀预报研究进展与展望[J]. 地球科学进展, 2022, 37(6): 551-562. [ZHANG Guanghui, YANG Yang, FU Suhua, et al. Advances and prospects of gully erosion prediction [J]. Advances in Earth Science, 2022, 37(6): 551-562] DOI: 10.11867/j.issn.1001-8166.2022.032
[13] POESEN J, NACHTERGAELE J, VERSTRAETEN G, et al. Gully erosion and environmental change: Importance and research needs [J]. Catena, 2003, 50(2-4): 91-133. DOI: 10.1016/s0341-8162(02)00143-1
[14] POESEN J W A, TORRI D B, VANWALLEGHEM T. Gully erosion: Procedures to adopt when modelling soil erosion in landscapes affected by gullying [J]. Handbook of Erosion Modelling, 2011, 4(19): 360-386. DOI: 10.1002/9781444328455.ch19
[15] TORRI D, POESEN J. A review of topographic threshold conditions for gully head development in different environments [J]. Earth-Science Reviews, 2014, 130: 73-85. DOI: 10.1016/j.earscirev.2013.12.006
[16] TANG Jie, XIE Yun, LIU Chuan, et al. Effects of rainfall characteristics and contour tillage on ephemeral gully development in a field in northeastern China [J]. Soil and Tillage Research, 2022, 218: 105312. DOI: 10.1016/j.still.2021.105312
[17] 胡刚, 伍永秋. 发生沟蚀(切沟)的地貌临界研究综述[J]. 山地学报, 2005, 23(5): 565-570. [HU Gang, WU Yongqiu. Progress in the study of geomorphic threshold theory in channel(gully)erosion [J]. Mountain Research, 2005, 23(5): 565-570] DOI: 10.3969/j.issn.1008-2786.2005.05.008
[18] 胡刚, 伍永秋, 刘宝元, 等. 东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨[J]. 地理科学, 2006, 26(4): 4449-4454. [HU Gang, WU Yongqiu, LIU Baoyuan, et al. Geomorphic threshold model for ephemeral gully incision in rolling hills with black soil in northeast China [J]. Scientia Geographica Sinica, 2006, 26(4): 4449-4454] DOI: 10.13249/j.cnki.sgs.2006.04.449
[19] VANDEKERCKHOVE L, POESEN J, WIJDENES D O, et al. Thresholds for gully initiation and sedimentation in Mediterranean Europe [J]. Earth Surface Processes and Landforms, 2000, 25(11): 1201-1220. DOI: 10.1002/1096-9837(200010)25:11<1201::aid-esp131>3.0.co; 2-l
[20] MORGAN R P C, MNGOMEZULU D. Threshold conditions for initiation of valley-side gullies in the Middle Veld of Swaziland [J]. Catena, 2003, 50(2-4): 401-414. DOI: 10.1016/S0341-8162(02)00129-7
[21] VERACHTERT E, VAN DEN EECKHAUT M, POESEN J, et al. Factors controlling the spatial distribution of soil piping erosion on loess-derived soils: A case study from central Belgium [J]. Geomorphology, 2010, 118(3): 339-348. DOI: 10.1016/j.geomorph.2010.02.001
[22] 李斌兵, 郑粉莉, 张鹏. 黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定[J]. 水土保持通报, 2008, 28(5): 16-20. [LI Binbing, ZHENG Fenli, ZHANG Peng. Geomorphic threshold determination for ephemeral gully and gully erosion areas in the loess hilly gully region [J]. Bulletin of Soil and Water Conservation, 2008, 28(5): 16-20] DOI: 10.13961/j.cnki.stbctb.2008.05.016
[23] CHENG Hong, ZOU Xueyong, WU Yongqiu, et al. Morphology parameters of ephemeral gully in characteristics hillslopes on the Loess Plateau of China [J]. Soil and Tillage Research, 2007, 94(1): 4-14. DOI: 10.1016/j.still.2006.06.007
[24] 刘欣, 王春梅, 庞国伟, 等. 基于坡度—汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J]. 山地学报, 2020, 38(5): 658-67. [LIU Xin, WANG Chunmei, PANG Guowei, et al. Sensitive area simulation of ephemeral and permanent gullies based on slope-area relationship in the loess region [J]. Mountain Research, 2020, 38(5): 658-667] DOI: 10.16089/j.cnki.1008-2786.000543
[25] DUBE H B, MUTEMA M, MUCHAONYERWA P, et al. A global analysis of the morphology of linear erosion features [J]. Catena, 2020, 190(2): 104542. DOI: 10.1016/j.catena.2020.104542
[26] VANMAERCKE M, PANAGOS P, VANWALLEGHEM T, et al. Measuring, modelling and managing gully erosion at large scales: A state of the art [J]. Earth-Science Reviews, 2021, 218(6): 103637. DOI: 10.1016/j.earscirev.2021.103637
[27] LIU Xin, GUO Mingming, ZHANG Xingyi, et al. Morphological characteristics and volume estimation model of permanent gullies and topographic threshold of gullying in the rolling hilly Mollisols region of northeast China [J]. Catena, 2023, 231(9): 107323. DOI: 10.1016/j.catena.2023.107323
[28] CHENG Hong, WU Yongqiu, ZOU Xueyong, et al. Study of ephemeral gully erosion in a small upland catchment on the Inner-Mongolian Plateau [J]. Soil and Tillage Research, 2006, 90(1-2): 184-193. DOI: 10.1016/j.still.2005.09.006
[29] GUAN Yabing, YANG Shengtian, ZHAO Changsen, et al. Monitoring long-term gully erosion and topographic thresholds in the marginal zone of the Chinese Loess Plateau [J]. Soil and Tillage Research, 2021, 205: 104800. DOI: 10.1016/j.still.2020.104800
[30] 刘欣. 基于地形指标的黄土高原坡面侵蚀沟发生与空间分异研究[D]. 西安: 西北大学, 2021: 1-69. [LIU Xin. Research on occurrence and spatial differentiation of hillslope erosion gullies based on topographic indexes in Loess Plateau [D]. Xi'an: Northwest University, 2021: 1-69] DOI: 10.27405/d.cnki.gxbdu.2021.001838
[31] 刘元保. 黄土高原坡面沟蚀的危害及其发生发展规律[D]. 杨凌: 中国科学院西北水土保持研究所, 1984: 1-89. [LIU Yuanbao. Harm and developmental patterns of gully erosion on Loess Plateau slopes [D]. Yangling: Institute of Soil and Water Conservation, Chinese Academy of Sciences, 1984: 1-89]
[32] ZHANG Chunmei, WANG Chunmei, LONG Yongqing, et al. Comparative analysis of gully morphology extraction suitability using unmanned aerial vehicle and google earth imagery [J]. Remote Sensing, 2023, 15(17): 4302. DOI: 10.3390/rs15174302
[33] 张春妹, 董亚维, 王春梅, 等. 黄河中游中等流域切沟空间分异规律研究[J]. 农业资源与环境学报, 2023, 40(2): 358-371. [ZHANG Chunmei, DONG Yawei, WANG Chunmei, et al. Study on the spatial differentiation patterns of gullies in the middle scale watershed of the middle reaches of Yellow River [J]. Journal of Agricultural Resources and Environment, 2023, 40(2): 358-371] DOI: 10.13254/j.jare.2022.0170
[34] PATTON P C, SCHUMM S A. Gully erosion, Northwestern Colorado: A threshold phenomenon [J]. Geology, 1975, 3(2): 88-90. DOI: 10.1130/0091-7613(1975)3<88:GENCAT>2.0.CO; 2
[35] 李浩, 杨薇, 刘晓冰, 等. 沟蚀发生的地貌临界理论计算中数据获取方法及应用[J]. 农业工程学报, 2019, 35(18): 127-133. [LI Hao, YANG Wei,LIU Xiaobing,et al. Data obtained method and application for topographic threshold theory calculation of gully initiation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 127-133] DOI: 10.11975/j.issn.1002-6819.2019.18.016
[36] LI Yong, MO Yaqi, ARE K S, et al. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation [J]. Agriculture Ecosystems and Environment, 2021, 309(12): 107289. DOI: 10.1016/j.agee.2020.107289
[37] LIU Gang, ZHENG Fenli, WILSON G V, et al. Three decades of ephemeral gully erosion studies [J]. Soil and Tillage Research, 2021, 212(39-41): 105046. DOI: 10.1016/j.still.2021.105046
[38] HAYAS A, POESEN J, VANWALLEGHEM T. Rainfall and vegetation effects on temporal variation of topographic thresholds for gully initiation in mediterranean cropland and olive groves [J]. Land Degradation and Development, 2017, 28(8): 2540-2552. DOI: 10.1002/ldr.2805
[39] TORRI D, SANTI E, MARIGNANI M, et al. The recurring cycles of biancana badlands: Erosion, vegetation and human impact [J]. Catena, 2013, 106(1): 22-30. DOI: 10.1016/j.catena.2012.07.001
[40] LI Zhenwei, ZHANG Guanghui, GENG Ren, et al. Rill erodibility as influenced by soil and land use in a small watershed of the Loess Plateau, China [J]. Biosystems Engineering, 2015, 129(11): 248-257. DOI: 10.1016/j.biosystemseng.2014.11.002
[41] POESEN J. Soil erosion in the Anthropocene: Research needs [J]. Earth Surface Processes and Landforms, 2018, 43(1): 64-84. DOI: 10.1002/esp.4250
[42] 李勉, 姚文艺, 陈江南, 等. 草被覆盖下坡沟系统坡面流能量变化特征试验研究[J]. 水土保持学报, 2005, 19(5): 15-19. [LI Mian, YAO Wenyi, CHEN Jiangnan, et al. Experimental study on changeable characteristics of runoff energy in hillslope-gully slope erosion system with different grass coverage [J]. Journal of Soil and Water Conservation, 2005, 19(5): 15-19] DOI: 10.3321/j.issn:1009-2242.2005.05.004
[43] 艾建卫, 高照良, 娄永才, 等. 含沙量对高陡边坡径流水动力学特性的影响[J]. 水土保持研究, 2023, 30(4): 75-82. [AI Jianwei, GAO Zhaoliang, LOU Yongcai, et al. Effects of sediment concentrationon hydrodynamic characteristics of runoff on high and steep slope [J]. Research of Soil and Water Conservation, 2023, 30(4): 75-82] DOI: 10.13869/j.cnki.rswc.2023.04.016
[44] 罗榕婷, 张光辉, 曹颖. 坡面含沙水流水动力学特性研究进展[J]. 地理科学进展, 2009, 28(4): 567-574. [LUO Rongting, ZHANG Guanghui, CAO Ying. Progress in the research of hydrodynamic characteristics of sediment-laden overland flow [J]. Progress in Geography, 2009, 28(4): 567-574] DOI: 10.11820/dlkxjz.2009.04.012
[45] 崔钦凯, 刘俊娥, 陈浩, 等. 草被覆盖、雨强和坡度对黄土坡面径流含沙量的影响[J]. 水土保持学报, 2023, 37(5): 40-47. [CUl Qinkai, LlU Jun'e, CHEN Hao, et al. Influence of grass coverage, rain intensity and slope on sediment concentration of runoff on loess slope [J]. Journal of Soil and Water Conservation, 2023, 37(5): 40-47] DOI: 10.13870/j.cnki.stbcxb.2023.05.005
[46] ARABAMERI A, CERDA A, PRADHAN B, et al. A methodological comparison of head-cut based gully erosion susceptibility models: Combined use of statistical and artificial intelligence [J]. Geomorphology, 2020, 359(7): 107136. DOI: 10.1016/j.geomorph.2020.107136
[47] ZHAO Yiyang, ZHANG Yan, YUAN Mutian, et al. Estimation of initiation thresholds and soil loss from gully erosion on unpaved roads on China's Loess Plateau [J]. Earth Surface Processes and Landforms, 2021, 46(9): 1713-1724. DOI: 10.1002/esp.5102

相似文献/References:

[1]刘 欣,等.基于坡度—汇水面积关系的黄土浅沟与切沟沟头形成敏感区模拟[J].山地学报,2020,(5):658.[doi:10.16089/j.cnki.1008-2786.000543]
 LIU Xin,WANG Chunmei*,et al.Sensitive Area Simulation of Ephemeral and Permanent Gullies Based on Slope-Area Relationship in the Loess Region[J].Mountain Research,2020,(2):658.[doi:10.16089/j.cnki.1008-2786.000543]
[2]刘 飞,朱 庆*,丁雨淋,等.滑坡—堰塞湖灾情无人机应急测绘、分析与险情模拟[J].山地学报,2021,(4):600.[doi:10.16089/j.cnki.1008-2786.000623]
 LIU Fei,ZHU Qing*,DING Yulin,et al.Analysis and Simulation of Landslide-barrier Lake Disaster Based on UAV Emergency Mapping[J].Mountain Research,2021,(2):600.[doi:10.16089/j.cnki.1008-2786.000623]
[3]毕 瑞,甘 淑*,袁希平,等.复杂地貌无人机遥感3D场景构建[J].山地学报,2022,(1):151.[doi:10.16089/j.cnki.1008-2786.000662]
 BI Rui,GAN Shu*,YUAN Xiping,et al.3D Scene Construction of Complex Landform Based on UAV Remote Sensing[J].Mountain Research,2022,(2):151.[doi:10.16089/j.cnki.1008-2786.000662]

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-10-14; 改回日期(Accepted date):2024- 04-14
基金项目(Foundation item): 国家自然科学基金(41977062)。 [National Natural Science Foundation of China(41977062)]
作者简介(Biography): 申华珍(1999-),男,山东济宁人,硕士研究生,主要研究方向:土壤侵蚀空间分异。 [SHEN Huazhen(1999-), male, born in Jining, Shandong province, M.Sc. candidate, research on spatial differentiation of soil erosion] E-mail: 202133186@stumail.nwu.edu.cn
*通讯作者(Corresponding author): 王春梅(1983-),女,博士,教授,主要研究方向:遥感与GIS应用、土壤侵蚀调查与模拟。 [WANG Chunmei(1983-), female, Ph.D., professor, research on remote sensing and GIS applications, soil erosion investigationand simulation] E-mail: cmwang@nwu.edu.cn
更新日期/Last Update: 2024-03-30