[1]何思明,张 振*,闫帅星,等.灾害地震学[J].山地学报,2024,(5):591-606.[doi:10.16089/j.cnki.1008-2786.000847]
 HE Siming,ZHANG Zhen*,YAN Shuaixing,et al.GeoDisaster Seismology[J].Mountain Research,2024,(5):591-606.[doi:10.16089/j.cnki.1008-2786.000847]
点击复制

灾害地震学
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第5期
页码:
591-606
栏目:
专家观点
出版日期:
2024-10-20

文章信息/Info

Title:
GeoDisaster Seismology
文章编号:
1008-2786-(2024)5-591-16
作者:
何思明1张 振2*闫帅星3王东坡3李 伟3
(1.中国科学院、水利部成都山地灾害与环境研究所 山地自然灾害与工程安全重点实验室(中国科学院),成都 610299; 2.瑞士联邦森林、雪与景观研究所,苏黎世 8903,瑞士; 3.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059)
Author(s):
HE Siming1 ZHANG Zhen2* YAN Shuaixing3 WANG Dongpo3 LI Wei3
(1. Key Laboratory of Mountain Hazards and Engineering Safety, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610299, China; 2. Swiss Federal Institute for Forest, Snow and Landscape Research, Zürich 8903, Switzerland; 3. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China)
关键词:
灾害地震学 地质灾害 地震信号 研究进展 发展方向
Keywords:
GeoDisaster Seismology geological disaster seismic signal research progress development direction
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000847
文献标志码:
A
摘要:
地震台网能够以高时空分辨率实时捕捉并记录地表灾害在形成和演化过程中产生的地震信号。通过地震学与灾害学交叉融合,一个全新的研究方向——“灾害地震学”已初见端倪。“灾害地震学”揭示地震信号震源机制,解析地震信号传播模型,辨识灾害类型、定位灾害发生位置、阐释灾害发生机理、反演灾害关键动力学参数,为突发性灾害灾情快速获取与评估、灾害监测与早期预警、约束和验证灾害动力学模型、评估灾害风险提供关键理论与技术支撑。本文初步提出灾害地震学概念,阐述灾害地震学的科学内涵,总结研究进展及其未来发展方向,为丰富和发展灾害地震学提供新的思路。
Abstract:
Seismic observation networks can simultaneously capture and record seismic signals generated by surface movement of geodisasters during their formation and evolution processes with high spatiotemporal resolution. Through the interdisciplinary integration of seismology and goe-disaster studies, an entirely new research direction—GeoDisaster Seismology—begins to take shape. GeoDisaster Seismology reveals the focal mechanisms of seismic signals, analyzes the propagation models of seismic signals, identifies goedisaster types, locates geodisaster occurrence sites, explains the mechanisms of geodisaster occurrence, and inverts key dynamic parameters of geodisasters. It provides crucial theoretical and technical support for rapid acquisition and assessment of sudden geodisaster situations, geodisaster monitoring and early warning, validation of geodisaster dynamics models, and assessment of geodisaster risks. This paper preliminarily proposes the concept of GeoDisaster Seismology, elaborates on its scientific connotations and summarizes research progress as well as future development directions. It offers new perspectives for the enrichment and development of GeoDisaster Seismology.

参考文献/References:

[1] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016 [J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. DOI: 10.5194/nhess-18-2161-2018
[2] GUZZETTI F, GARIANO S L, PERUCCACCI S, et al. Geographical landslide early warning systems [J]. Earth-Science Reviews, 2020, 200: 102973. DOI: 10.1016/j.earscirev.2019.102973
[3] ZHANG Zhen, LIU Min, TAN Y J, et al. Landslide hazard cascades can trigger earthquakes [J]. Nature Communications, 2024, 15: 2878. DOI: 10.1038/s41467-024-47130-w
[4] FAN Xuanmei, YANG Fan, SUBRAMANIAN S S, et al. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China [J]. Landslides, 2020, 17: 147-164. DOI: 10.1007/s10346-019-01313-5
[5] CHEN Fei, GAO Yunjian, ZHAO Siyuan, et al. Kinematic process and mechanism of the two slope failures at Baige Village in the upper reaches of the Jinsha River, China [J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 3475-3493. DOI: 10.1007/s10064-021-02146-0
[6] 张振. 基于地震信号的滑坡和泥石流动力参数反演研究[D]. 成都: 中国科学院大学, 2021: 1-146. [ZHANG Zhen. Extracting the dynamics of landslides and debris flows using their seismic signals [D]. Chengdu: University of Chinese Academy of Sciences, 2021: 1-146]
[7] TRALLI D M, BLOM R G, ZLOTNICKI V, et al. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 59(4): 185-198. DOI: 10.1016/j.isprsjprs.2005.02.002
[8] MCARDELL B W, BARTELT P, KOWALSKI J. Field observations of basal forces and fluid pore pressure in a debris flow [J]. Geophysical Research Letters, 2007, 34(7): L07406. DOI: 10.1029/2006GL029183
[9] MCCOY S W, KEAN J W, COE J A, et al. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning [J]. Geology, 2010, 38(8): 735-738. DOI: 10.1130/G30928.1
[10] KHRAPOV S S, PISAREV A V, KOBELEV I A, et al. The numerical simulation of shallow water: Estimation of the roughness coefficient on the flood stage [J]. Advances in Mechanical Engineering, 2013, 5: 787016. DOI: 10.1155/2013/787016
[11] ANEES M T, ABDULLAH K, NAWAWI M N M, et al. Numerical modeling techniques for flood analysis [J]. Journal of African Earth Sciences, 2016, 124: 478-486. DOI: 10.1016/j.jafrearsci. 2016.10.001
[12] YAVARI-RAMSHE S, ATAIE-ASHTIANI B. Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges [J]. Landslides, 2016, 13: 1325-1368. DOI: 10.1007/s10346-016-0734-2
[13] TSAI V C, MINCHEW B, LAMB M P, et al. A physical model for seismic noise generation from sediment transport in rivers [J]. Geophysical Research Letters, 2012, 39(2): L02404. DOI: 10.1029/2011GL050255
[14] EKSTRÖM G, STARK C P. Simple scaling of catastrophic landslide dynamics [J]. Science, 2013, 339(6126): 1416-1419. DOI: 10.1126/science.1232887
[15] COOK K L, REKAPALLI R, DIETZE M, et al. Detection and potential early warning of catastrophic flow events with regional seismic networks [J]. Science, 2021, 374(6563): 87-92. DOI: 10.1126/science.abj1227
[16] ZHANG Zhen, WALTER F, MCARDELL B W, et al. Insight from the particle impact model into the high frequency seismic signature of debris flows [J]. Geophysical Research Letters, 2021, 48(1): e2020GL088994. DOI: 10.1029/2020GL088994
[17] MAURER J M, SCHAEFER J M, RUSSELL J B, et al. Seismic observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the Himalayas [J]. Science Advances, 2020, 6(38): eaba3645. DOI: 10.1126/sciadv.aba364
[18] CHMIEL M, WALTER F, WENNER M, et al. Machine Learning improves warning systems of debris flows [J]. Geophysical Research Letters, 2021, 48(3): 1-58. DOI: 10.1029/ 2020GL090874
[19] ZHANG Zhen, WALTER F, MCARDELL B W, et al. Analyzing bulk flow characteristics of debris flows using their high frequency seismic signature [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022755. DOI: 10.1029/2021JB022755
[20] HIBERT C, MANGENEY A, GRANDJEAN G, et al. Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(5): 1082-1105. DOI: 10.1002/2013JF002970
[21] KANAMORI H, GIVEN J W. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: A terrestrial monopole? [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7): 5422-5432. DOI: 10.1029/JB087Ib07p05422
[22] KANAMORI H, GIVEN J W, LAY T. Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980 [J]. Journal of Geophysical Research Solid Earth, 1984, 89(B3):1856-1866. DOI: 10.1029/JB089iB03p01856
[23] ALLSTADT K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1472-1490. DOI: 10.1002/jgrf.20110
[24] MANCONI A, PICOZZI M, COVIELLO V, et al. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks [J]. Geophysical Research Letters, 2016, 43(13): 6960-6967. DOI: 10.1002/2016GL 069572
[25] FUCHS F, LENHARDT W, BOKELMANN G, et al. Seismic detection of rockslides at regional scale: Examples from the Eastern Alps and feasibility of kurtosis-based event location [J]. Earth Surface Dynamics, 2018, 6(4): 955-970. DOI: 10.5194/esurf-6-955-2018
[26] CHANG Juiming, CHAO Weian, CHEN Hongey, et al. Locating rock slope failures along highways and understanding their physical processes using seismic signals [J]. Earth Surface Dynamics, 2021, 9(3): 505-517. DOI: 10.5194/esurf-9-505-2021
[27] HIBERT C, PROVOST F, MALET J P, et al. Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm [J]. Journal of Volcanology and Geothermal Research, 2017, 340(15): 130-142. DOI: 10.1016/j.jvolgeores.2017.04.015
[28] LANGET N, SILVERBERG F M J. Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network [J]. Earth Surface Dynamics, 2023, 11(1): 89-115. DOI: 10.5194/esurf-11-89-2023
[29] 冯亮,张振. 微震技术在崩塌落石监测预警应用的研究进展[J]. 工程地质学报, 2024, 32(2): 545-564. [FENG Liang, ZHANG Zhen. Seismic monitoring in rockfall: A literature review [J]. Journal of Engineering Geology, 2024, 32(2): 545-564] DOI: 10.13544/j.cnki.jeg.2022-0079
[30] LACROIX P, HELMSTETTER A. Location of seismic signals associated with microearthquakes and rockfalls on the Sechilienne Landslide, French Alps [J]. Bulletin of the Seismological Society of America, 2011, 101(1): 341-353. DOI: 10.1785/0120100110
[31] DIETZE M, MOHADJER S, TUROWSKI J M, et al. Seismic monitoring of small alpine rockfalls – validity, precision and limitations [J]. Earth Surface Dynamics, 2017, 5(4): 653-668. DOI: 10.5194/esurf-5-653-2017
[32] LI Wei, WANG Dongpo, YI Xuebin, et al. Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall [J]. Engineering Geology, 2023, 323: 107222. DOI: 10.1016/j.enggeo.2023.107222
[33] BATTAGLIA J, AKI K. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes [J]. Journal of Geophysical Research, 2003, 108(B8): 2364. DOI: 10.1029/2002JB002193
[34] PÉREZ-GUILLÉN C, TSUNEMATSU K, NISHIMURA K, et al. Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan [J]. Earth Surface Dynamics, 2019, 7(4): 989-1007. DOI: 10.5194/esurf-7-989-2019
[35] VILAJOSANA I, SURIACH E, ABELL N A, et al. Rockfall induced seismic signals: Case study in Montserrat, Catalonia [J]. Natural Hazards and Earth System Sciences, 2008, 8(4): 805-812. DOI: 10.5194/nhess-8-805-2008
[36] TONEY L, FEE D, ALLSTADT K E, et al. Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano(Alaska)ice–rock avalanches from seismoacoustic data [J]. Earth Surface Dynamics, 2021, 9(2): 271-293. DOI: 10.5194/esurf-9-271-2021
[37] YAN Shuaixing, WANG Yu, WANG Dongpo, et al. Application of EPS geofoam in rockfall galleries: Insights from large-scale experiments and FDEM simulations [J]. Geotextiles and Geomembranes, 2022, 50(4): 677-693. DOI: 10.1016/j.geotexmem.2022.03.009
[38] FARIN M, MANGENEY A, TOUSSAINT R, et al. Characterization of rockfalls from seismic signal: Insights from laboratory experiments [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(10): 7102-7137. DOI: 10.1002/2015JB012331
[39] BACHELET V, MANGENEY A, DE ROSNY J, et al. Elastic wave generated by granular impact on rough and erodible surfaces [J]. Journal of Applied Physics, 2018, 123(4): 044901. DOI: 10.1063/1.5012979
[40] 王东坡, 陈会娟, 李伟, 等. 基于地震信号的滚石定位及动力参数反演研究[J]. 振动与冲击, 2024, 43(17): 19-26. [WANG Dongpo, CHEN Huijuan, LI Wei, et al. Rolling stone positioning and dynamic parametric inversion based on seismic signals [J]. Journal of Vibration and Shock, 2024, 43(17): 19-26] DOI: 10.13465/j.cnki.jvs.2024.17.003
[41] DEPARIS J, JONGMANS D, COTTON F, et al. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps [J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1781-1796. DOI: 10.1785/0120070082
[42] HIBERT C, MANGENEY A, GRANDJEAN G, et al. Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics [J]. Journal of Geophysical Research, 2011, 116(F4): F04032. DOI: 10.1029/2011JF002038
[43] LE ROY G, HELMSTETTER A, AMITRANO D, et al. Seismic analysis of the detachment and impact phases of a rockfall and application for estimating rockfall volume and free‐fall height [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(11): 2602-2622. DOI: 10.1029/2019JF004999
[44] MORETTI L, MANGENEY A, CAPDEVILLE Y, et al. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves [J]. Geophysical Research Letters, 2012, 39(16): L16402. DOI: 10.1029/2012GL052511
[45] ZHANG Zhen, HE Siming. Analysis of broadband seismic recordings of landslide using empirical Green's function [J]. Geophysical Research Letters, 2019, 46(9): 4628-4635. DOI: 10.1029/2018GL081448
[46] ALLSTADT K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1472-1490. DOI: 10.1002/jgrf.20110
[47] MORETTI L, ALLSTADT K, MANGENEY A, et al. Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2579-2599. DOI: 10.1002/2014JB011426
[48] AKI K, RICHARDS P G. Quantitative seismology [M]. Mill Valley: University Science Books, 2002: 1-742
[49] ZHANG Zhen, HE Siming, LIU Wei, et al. Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms [J]. Landslides, 2019, 16: 777-785. DOI: 10.1007/s10346-019-01145-3
[50] BAI Xiuqiang, HE Siming. Dynamic process of the massive Aru glacier collapse in Tibet [J]. Landslides, 2020, 17: 1353-1361. DOI: 10.1007/s10346-019-01337-x
[51] ZHANG Zhen, HE Siming, LI Qianfeng. Analyzing high-frequency seismic signals generated during a landslide using source discrepancies between two landslides [J]. Engineering Geology, 2020, 272: 105640. DOI: 10.1016/j.enggeo.2020.105640
[52] ALLSTADT K E, FARIN M, IVERSON R M, et al. Measuring basal force fluctuations of debris flows using seismic recordings and empirical green's functions [J]. Journal of Geophysical Research: Earth Surface, 2020, 125: e2020JF005590. DOI: 10.1029/2020 JF005590
[53] MICHLMAYR G, COHEN D, OR D. Source and characteristics of acoustic emissions from mechanically stressed geologic granular media: A review [J]. Earth Science Reviews, 2012, 112(3-4): 97-114. DOI: 10.1016/j.earscirev.2012.02.009
[54] OGISO M, YOMOGIDA K. Estimation of locations and migration of debris flows on Izu-Oshima Island, Japan, on 16 October 2013 by the distribution of high frequency seismic amplitudes [J]. Journal of Volcanology & Geothermal Research, 2015, 298: 15-26. DOI: 10.1016/j.jvolgeores.2015.03.015
[55] WALTER F, BURTIN A, MCARDELL B W, et al. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland [J]. Natural Hazards and Earth System Sciences, 2017, 17(6): 939-955. DOI: 10.5194/nhess-17-939-2017
[56] MCCOY S W, TUCKER G E, KEAN J W, et al. Field measurement of basal forces generated by erosive debris flows [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 589-602. DOI: 10.1002/jgrf.20041
[57] HSU L, DIETRICH W E, SKLAR L S. Mean and fluctuating basal forces generated by granular flows: Laboratory observations in a large vertically rotating drum [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(6): 1283-1309. DOI: 10.1002/2013JF003078
[58] FARIN M, TSAI V C, LAMB M P, et al. A physical model of the high‐frequency seismic signal generated by debris flows [J]. Earth Surface Processes and Landforms, 2019, 44(13): 2529-2543. DOI: 10.1002/esp.4677
[59] KEAN J W, COE J A, COVIELLO V, et al. Estimating rates of debris flow entrainment from ground vibrations [J]. Geophysical Research Letters, 2015, 42(15): 6365-6372. DOI: 10.1002/2015GL064811
[60] LAI V H, TSAI V C, LAMB M P, et al. The seismic signature of debris flows: Flow mechanics and early warning at Montecito, California [J]. Geophysical Research Letters, 2018, 45(11): 5528-5535. DOI: 10.1029/2018GL077683
[61] CAMPBELL C S. Granular material flows: An overview [J]. Powder Technology, 2006, 162(3): 208-229. DOI: 10.1016/j.powtec.2005.12.008
[62] ESTEP J, DUFEK J. Substrate effects from force chain dynamics in dense granular flows [J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01028. DOI: 10.1029/2011JF002125
[63] KEEFER D K. Investigating landslides caused by earthquakes: A historical review [J]. Surveys in Geophysics, 2002, 23: 473-510. DOI: 10.1023/A:1021274710840
[64] MEUNIER P, HOVIUS N, HAINES J A. Topographic site effects and the location of earthquake induced landslides [J]. Earth and Planetary Science Letters, 2008, 275(3-4): 221-232. DOI: 10.1016/j.epsl.2008.07.020
[65] KARGEL J S, LEONARD G J, SHUGAR D H, et al. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake [J]. Science, 2016, 351(6269): aac8353. DOI: 10.1126/science.aac8353
[66] ZHANG Zhen, TAN Y J, WALTER F, et al. Seismic monitoring and geomorphic impacts of the catastrophic 2018 Baige landslide hazard cascades in the Tibetan Plateau [J]. Journal of Geophysical Research: Earth Surface, 2024, 129(2): e2023JF007363. DOI: 10.1029/2023 JF007363
[67] GIMBERT F, TSAI V C, LAMB M P. A physical model for seismic noise generation by turbulent flow in rivers [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(10): 2209-2238. DOI: 10.1002/2014JF003201

相似文献/References:

[1]孙萍萍,张茂省*,程秀娟,等.黄土高原地质灾害发生规律[J].山地学报,2019,(05):737.[doi:10.16089/j.cnki.1008-2786.000464]
 SUN Pingping,ZHANG Maosheng*,CHENG Xiujuan,et al.On the Regularity of Geological Hazards on the Loess Plateau in China[J].Mountain Research,2019,(5):737.[doi:10.16089/j.cnki.1008-2786.000464]

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 07-23; 改回日期(Accepted date):2024-10-15
基金项目(Foundation item): 国家重点研发计划(2022YFF0800604); 西藏自治区重大科技专项(XZ202402ZD0001)。[National Key Research and Development Program of China(2022YFF0800604); Major Science and Technology Project of Tibet(XZ202402ZD0001)]
作者简介(Biography): 何思明(1968-),男,博士,二级研究员,主要研究方向:地质灾害监测预警与动力学。[HE Siming(1968-), male, Ph.D., professor, research on dynamics and early warning of mass movements] Email: hsm@imde.ac.cn
*通讯作者(Corresponding author): 张振(1992–),男,博士,主要研究方向:灾害地震学。[ZHANG Zhen(1992–), male, Ph.D., research on GeoDisaster Seismology] Email: zhen.zhang@wsl.ch
更新日期/Last Update: 2024-09-30