参考文献/References:
[1] FROUDE M J, PETLEY D N. Global fatal landslide occurrence from 2004 to 2016 [J]. Natural Hazards and Earth System Sciences, 2018, 18(8): 2161-2181. DOI: 10.5194/nhess-18-2161-2018
[2] GUZZETTI F, GARIANO S L, PERUCCACCI S, et al. Geographical landslide early warning systems [J]. Earth-Science Reviews, 2020, 200: 102973. DOI: 10.1016/j.earscirev.2019.102973
[3] ZHANG Zhen, LIU Min, TAN Y J, et al. Landslide hazard cascades can trigger earthquakes [J]. Nature Communications, 2024, 15: 2878. DOI: 10.1038/s41467-024-47130-w
[4] FAN Xuanmei, YANG Fan, SUBRAMANIAN S S, et al. Prediction of a multi-hazard chain by an integrated numerical simulation approach: The Baige landslide, Jinsha River, China [J]. Landslides, 2020, 17: 147-164. DOI: 10.1007/s10346-019-01313-5
[5] CHEN Fei, GAO Yunjian, ZHAO Siyuan, et al. Kinematic process and mechanism of the two slope failures at Baige Village in the upper reaches of the Jinsha River, China [J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 3475-3493. DOI: 10.1007/s10064-021-02146-0
[6] 张振. 基于地震信号的滑坡和泥石流动力参数反演研究[D]. 成都: 中国科学院大学, 2021: 1-146. [ZHANG Zhen. Extracting the dynamics of landslides and debris flows using their seismic signals [D]. Chengdu: University of Chinese Academy of Sciences, 2021: 1-146]
[7] TRALLI D M, BLOM R G, ZLOTNICKI V, et al. Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 59(4): 185-198. DOI: 10.1016/j.isprsjprs.2005.02.002
[8] MCARDELL B W, BARTELT P, KOWALSKI J. Field observations of basal forces and fluid pore pressure in a debris flow [J]. Geophysical Research Letters, 2007, 34(7): L07406. DOI: 10.1029/2006GL029183
[9] MCCOY S W, KEAN J W, COE J A, et al. Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning [J]. Geology, 2010, 38(8): 735-738. DOI: 10.1130/G30928.1
[10] KHRAPOV S S, PISAREV A V, KOBELEV I A, et al. The numerical simulation of shallow water: Estimation of the roughness coefficient on the flood stage [J]. Advances in Mechanical Engineering, 2013, 5: 787016. DOI: 10.1155/2013/787016
[11] ANEES M T, ABDULLAH K, NAWAWI M N M, et al. Numerical modeling techniques for flood analysis [J]. Journal of African Earth Sciences, 2016, 124: 478-486. DOI: 10.1016/j.jafrearsci. 2016.10.001
[12] YAVARI-RAMSHE S, ATAIE-ASHTIANI B. Numerical modeling of subaerial and submarine landslide-generated tsunami waves—recent advances and future challenges [J]. Landslides, 2016, 13: 1325-1368. DOI: 10.1007/s10346-016-0734-2
[13] TSAI V C, MINCHEW B, LAMB M P, et al. A physical model for seismic noise generation from sediment transport in rivers [J]. Geophysical Research Letters, 2012, 39(2): L02404. DOI: 10.1029/2011GL050255
[14] EKSTRÖM G, STARK C P. Simple scaling of catastrophic landslide dynamics [J]. Science, 2013, 339(6126): 1416-1419. DOI: 10.1126/science.1232887
[15] COOK K L, REKAPALLI R, DIETZE M, et al. Detection and potential early warning of catastrophic flow events with regional seismic networks [J]. Science, 2021, 374(6563): 87-92. DOI: 10.1126/science.abj1227
[16] ZHANG Zhen, WALTER F, MCARDELL B W, et al. Insight from the particle impact model into the high frequency seismic signature of debris flows [J]. Geophysical Research Letters, 2021, 48(1): e2020GL088994. DOI: 10.1029/2020GL088994
[17] MAURER J M, SCHAEFER J M, RUSSELL J B, et al. Seismic observations, numerical modeling, and geomorphic analysis of a glacier lake outburst flood in the Himalayas [J]. Science Advances, 2020, 6(38): eaba3645. DOI: 10.1126/sciadv.aba364
[18] CHMIEL M, WALTER F, WENNER M, et al. Machine Learning improves warning systems of debris flows [J]. Geophysical Research Letters, 2021, 48(3): 1-58. DOI: 10.1029/ 2020GL090874
[19] ZHANG Zhen, WALTER F, MCARDELL B W, et al. Analyzing bulk flow characteristics of debris flows using their high frequency seismic signature [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(12): e2021JB022755. DOI: 10.1029/2021JB022755
[20] HIBERT C, MANGENEY A, GRANDJEAN G, et al. Automated identification, location, and volume estimation of rockfalls at Piton de la Fournaise volcano [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(5): 1082-1105. DOI: 10.1002/2013JF002970
[21] KANAMORI H, GIVEN J W. Analysis of long-period seismic waves excited by the May 18, 1980, eruption of Mount St. Helens: A terrestrial monopole? [J]. Journal of Geophysical Research: Solid Earth, 1982, 87(B7): 5422-5432. DOI: 10.1029/JB087Ib07p05422
[22] KANAMORI H, GIVEN J W, LAY T. Analysis of seismic body waves excited by the Mount St. Helens eruption of May 18, 1980 [J]. Journal of Geophysical Research Solid Earth, 1984, 89(B3):1856-1866. DOI: 10.1029/JB089iB03p01856
[23] ALLSTADT K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1472-1490. DOI: 10.1002/jgrf.20110
[24] MANCONI A, PICOZZI M, COVIELLO V, et al. Real-time detection, location, and characterization of rockslides using broadband regional seismic networks [J]. Geophysical Research Letters, 2016, 43(13): 6960-6967. DOI: 10.1002/2016GL 069572
[25] FUCHS F, LENHARDT W, BOKELMANN G, et al. Seismic detection of rockslides at regional scale: Examples from the Eastern Alps and feasibility of kurtosis-based event location [J]. Earth Surface Dynamics, 2018, 6(4): 955-970. DOI: 10.5194/esurf-6-955-2018
[26] CHANG Juiming, CHAO Weian, CHEN Hongey, et al. Locating rock slope failures along highways and understanding their physical processes using seismic signals [J]. Earth Surface Dynamics, 2021, 9(3): 505-517. DOI: 10.5194/esurf-9-505-2021
[27] HIBERT C, PROVOST F, MALET J P, et al. Automatic identification of rockfalls and volcano-tectonic earthquakes at the Piton de la Fournaise volcano using a Random Forest algorithm [J]. Journal of Volcanology and Geothermal Research, 2017, 340(15): 130-142. DOI: 10.1016/j.jvolgeores.2017.04.015
[28] LANGET N, SILVERBERG F M J. Automated classification of seismic signals recorded on the Åknes rock slope, Western Norway, using a convolutional neural network [J]. Earth Surface Dynamics, 2023, 11(1): 89-115. DOI: 10.5194/esurf-11-89-2023
[29] 冯亮,张振. 微震技术在崩塌落石监测预警应用的研究进展[J]. 工程地质学报, 2024, 32(2): 545-564. [FENG Liang, ZHANG Zhen. Seismic monitoring in rockfall: A literature review [J]. Journal of Engineering Geology, 2024, 32(2): 545-564] DOI: 10.13544/j.cnki.jeg.2022-0079
[30] LACROIX P, HELMSTETTER A. Location of seismic signals associated with microearthquakes and rockfalls on the Sechilienne Landslide, French Alps [J]. Bulletin of the Seismological Society of America, 2011, 101(1): 341-353. DOI: 10.1785/0120100110
[31] DIETZE M, MOHADJER S, TUROWSKI J M, et al. Seismic monitoring of small alpine rockfalls – validity, precision and limitations [J]. Earth Surface Dynamics, 2017, 5(4): 653-668. DOI: 10.5194/esurf-5-653-2017
[32] LI Wei, WANG Dongpo, YI Xuebin, et al. Characterizing large rockfalls using their seismic signature: A case study of Hongya rockfall [J]. Engineering Geology, 2023, 323: 107222. DOI: 10.1016/j.enggeo.2023.107222
[33] BATTAGLIA J, AKI K. Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes [J]. Journal of Geophysical Research, 2003, 108(B8): 2364. DOI: 10.1029/2002JB002193
[34] PÉREZ-GUILLÉN C, TSUNEMATSU K, NISHIMURA K, et al. Seismic location and tracking of snow avalanches and slush flows on Mt. Fuji, Japan [J]. Earth Surface Dynamics, 2019, 7(4): 989-1007. DOI: 10.5194/esurf-7-989-2019
[35] VILAJOSANA I, SURIACH E, ABELL N A, et al. Rockfall induced seismic signals: Case study in Montserrat, Catalonia [J]. Natural Hazards and Earth System Sciences, 2008, 8(4): 805-812. DOI: 10.5194/nhess-8-805-2008
[36] TONEY L, FEE D, ALLSTADT K E, et al. Reconstructing the dynamics of the highly similar May 2016 and June 2019 Iliamna Volcano(Alaska)ice–rock avalanches from seismoacoustic data [J]. Earth Surface Dynamics, 2021, 9(2): 271-293. DOI: 10.5194/esurf-9-271-2021
[37] YAN Shuaixing, WANG Yu, WANG Dongpo, et al. Application of EPS geofoam in rockfall galleries: Insights from large-scale experiments and FDEM simulations [J]. Geotextiles and Geomembranes, 2022, 50(4): 677-693. DOI: 10.1016/j.geotexmem.2022.03.009
[38] FARIN M, MANGENEY A, TOUSSAINT R, et al. Characterization of rockfalls from seismic signal: Insights from laboratory experiments [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(10): 7102-7137. DOI: 10.1002/2015JB012331
[39] BACHELET V, MANGENEY A, DE ROSNY J, et al. Elastic wave generated by granular impact on rough and erodible surfaces [J]. Journal of Applied Physics, 2018, 123(4): 044901. DOI: 10.1063/1.5012979
[40] 王东坡, 陈会娟, 李伟, 等. 基于地震信号的滚石定位及动力参数反演研究[J]. 振动与冲击, 2024, 43(17): 19-26. [WANG Dongpo, CHEN Huijuan, LI Wei, et al. Rolling stone positioning and dynamic parametric inversion based on seismic signals [J]. Journal of Vibration and Shock, 2024, 43(17): 19-26] DOI: 10.13465/j.cnki.jvs.2024.17.003
[41] DEPARIS J, JONGMANS D, COTTON F, et al. Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps [J]. Bulletin of the Seismological Society of America, 2008, 98(4): 1781-1796. DOI: 10.1785/0120070082
[42] HIBERT C, MANGENEY A, GRANDJEAN G, et al. Slope instabilities in Dolomieu crater, Réunion Island: From seismic signals to rockfall characteristics [J]. Journal of Geophysical Research, 2011, 116(F4): F04032. DOI: 10.1029/2011JF002038
[43] LE ROY G, HELMSTETTER A, AMITRANO D, et al. Seismic analysis of the detachment and impact phases of a rockfall and application for estimating rockfall volume and free‐fall height [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(11): 2602-2622. DOI: 10.1029/2019JF004999
[44] MORETTI L, MANGENEY A, CAPDEVILLE Y, et al. Numerical modeling of the Mount Steller landslide flow history and of the generated long period seismic waves [J]. Geophysical Research Letters, 2012, 39(16): L16402. DOI: 10.1029/2012GL052511
[45] ZHANG Zhen, HE Siming. Analysis of broadband seismic recordings of landslide using empirical Green's function [J]. Geophysical Research Letters, 2019, 46(9): 4628-4635. DOI: 10.1029/2018GL081448
[46] ALLSTADT K. Extracting source characteristics and dynamics of the August 2010 Mount Meager landslide from broadband seismograms [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(3): 1472-1490. DOI: 10.1002/jgrf.20110
[47] MORETTI L, ALLSTADT K, MANGENEY A, et al. Numerical modeling of the Mount Meager landslide constrained by its force history derived from seismic data [J]. Journal of Geophysical Research: Solid Earth, 2015, 120(4): 2579-2599. DOI: 10.1002/2014JB011426
[48] AKI K, RICHARDS P G. Quantitative seismology [M]. Mill Valley: University Science Books, 2002: 1-742
[49] ZHANG Zhen, HE Siming, LIU Wei, et al. Source characteristics and dynamics of the October 2018 Baige landslide revealed by broadband seismograms [J]. Landslides, 2019, 16: 777-785. DOI: 10.1007/s10346-019-01145-3
[50] BAI Xiuqiang, HE Siming. Dynamic process of the massive Aru glacier collapse in Tibet [J]. Landslides, 2020, 17: 1353-1361. DOI: 10.1007/s10346-019-01337-x
[51] ZHANG Zhen, HE Siming, LI Qianfeng. Analyzing high-frequency seismic signals generated during a landslide using source discrepancies between two landslides [J]. Engineering Geology, 2020, 272: 105640. DOI: 10.1016/j.enggeo.2020.105640
[52] ALLSTADT K E, FARIN M, IVERSON R M, et al. Measuring basal force fluctuations of debris flows using seismic recordings and empirical green's functions [J]. Journal of Geophysical Research: Earth Surface, 2020, 125: e2020JF005590. DOI: 10.1029/2020 JF005590
[53] MICHLMAYR G, COHEN D, OR D. Source and characteristics of acoustic emissions from mechanically stressed geologic granular media: A review [J]. Earth Science Reviews, 2012, 112(3-4): 97-114. DOI: 10.1016/j.earscirev.2012.02.009
[54] OGISO M, YOMOGIDA K. Estimation of locations and migration of debris flows on Izu-Oshima Island, Japan, on 16 October 2013 by the distribution of high frequency seismic amplitudes [J]. Journal of Volcanology & Geothermal Research, 2015, 298: 15-26. DOI: 10.1016/j.jvolgeores.2015.03.015
[55] WALTER F, BURTIN A, MCARDELL B W, et al. Testing seismic amplitude source location for fast debris-flow detection at Illgraben, Switzerland [J]. Natural Hazards and Earth System Sciences, 2017, 17(6): 939-955. DOI: 10.5194/nhess-17-939-2017
[56] MCCOY S W, TUCKER G E, KEAN J W, et al. Field measurement of basal forces generated by erosive debris flows [J]. Journal of Geophysical Research: Earth Surface, 2013, 118(2): 589-602. DOI: 10.1002/jgrf.20041
[57] HSU L, DIETRICH W E, SKLAR L S. Mean and fluctuating basal forces generated by granular flows: Laboratory observations in a large vertically rotating drum [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(6): 1283-1309. DOI: 10.1002/2013JF003078
[58] FARIN M, TSAI V C, LAMB M P, et al. A physical model of the high‐frequency seismic signal generated by debris flows [J]. Earth Surface Processes and Landforms, 2019, 44(13): 2529-2543. DOI: 10.1002/esp.4677
[59] KEAN J W, COE J A, COVIELLO V, et al. Estimating rates of debris flow entrainment from ground vibrations [J]. Geophysical Research Letters, 2015, 42(15): 6365-6372. DOI: 10.1002/2015GL064811
[60] LAI V H, TSAI V C, LAMB M P, et al. The seismic signature of debris flows: Flow mechanics and early warning at Montecito, California [J]. Geophysical Research Letters, 2018, 45(11): 5528-5535. DOI: 10.1029/2018GL077683
[61] CAMPBELL C S. Granular material flows: An overview [J]. Powder Technology, 2006, 162(3): 208-229. DOI: 10.1016/j.powtec.2005.12.008
[62] ESTEP J, DUFEK J. Substrate effects from force chain dynamics in dense granular flows [J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F1): F01028. DOI: 10.1029/2011JF002125
[63] KEEFER D K. Investigating landslides caused by earthquakes: A historical review [J]. Surveys in Geophysics, 2002, 23: 473-510. DOI: 10.1023/A:1021274710840
[64] MEUNIER P, HOVIUS N, HAINES J A. Topographic site effects and the location of earthquake induced landslides [J]. Earth and Planetary Science Letters, 2008, 275(3-4): 221-232. DOI: 10.1016/j.epsl.2008.07.020
[65] KARGEL J S, LEONARD G J, SHUGAR D H, et al. Geomorphic and geologic controls of geohazards induced by Nepal's 2015 Gorkha earthquake [J]. Science, 2016, 351(6269): aac8353. DOI: 10.1126/science.aac8353
[66] ZHANG Zhen, TAN Y J, WALTER F, et al. Seismic monitoring and geomorphic impacts of the catastrophic 2018 Baige landslide hazard cascades in the Tibetan Plateau [J]. Journal of Geophysical Research: Earth Surface, 2024, 129(2): e2023JF007363. DOI: 10.1029/2023 JF007363
[67] GIMBERT F, TSAI V C, LAMB M P. A physical model for seismic noise generation by turbulent flow in rivers [J]. Journal of Geophysical Research: Earth Surface, 2014, 119(10): 2209-2238. DOI: 10.1002/2014JF003201