参考文献/References:
[1] 袁志忠, 何丙辉. 岷江柏种群现状及研究进展 [J]. 山区开发, 2003(6): 34-35. [YUAN Zhizhong, HE Binghui. Current situation and reaserch progress of Cupressus chengiana [J]. Mountain Development, 2003(6): 34-35]
[2] 李东胜, 罗达, 史作民, 等. 四川理县杂谷脑干旱河谷岷江柏造林恢复效果评价[J]. 生态学报, 2014, 34(9): 2338-2346. [LI Dongsheng, LUO Da, SHI Zuomin, et al. Assessing effects of Cupressus chengiana plantations in the dry valley of Zagunao River, Li County of Sichuan Province [J]. Acta Ecologica Sinica, 2014, 34(9): 2338-2346] DOI: 10.5846/stxb201306091496
[3] 包维楷, 庞学勇, 李芳兰, 等. 干旱河谷生态恢复与持续管理的科学基础[M]. 北京: 科学出版社, 2012: 460-590. [BAO Weikai, PANG Xueyong, LI Fanglan, et al. The scientific basis for ecological restoration and sustainable management of arid river valleys [M]. Beijing: Science Press, 2012: 460-590]
[4] 李登峰, 魏仕军, 陈静, 等. 岷江上游干旱河谷岷江柏的光合与水分生理特征干湿季对比研究[J]. 生态学报, 2022, 42(18): 7381-7389. [LI Dengfeng, WEI Shijun, CHEN Jing, et al. Comparative study on photosynthetic physiological and water physiological characteristics of Cupressus chengiana in wet and dry season, the upper Minjiang River dry valley [J]. Acta Ecologica Sinica, 2022, 42(18): 7381-7389] DOI: 10.5846/stxb202109092538
[5] 朱林海. 岷江干旱河谷整地造林植被恢复的长期效果评价[D]. 重庆: 西南大学, 2009: 1-62. [ZHU Linhai. Evaluation on long-term effects of vegetaion restoration by afforestation with site-preparation in the dry valley of Minjiang River, Southwestern China [D]. Chongqing: Southwest University, 2009: 1-62]
[6] 马吉才, 冯杰. 岷江杂谷脑河9种典型植被群落的水源涵养能力与价值评估[J]. 四川林业科技, 2017, 38(2): 110-113. [MA Jicai, FENG Jie. A study of water conservation capacity and value evaluation of 9 kinds of typical vegetation community in the Zagunao River of the Minjiang River [J]. Journal of Sichuan Forestry Science and Technology, 2017, 38(2): 110-113] DOI: 10.16779/j. cnki.1003-5508.2017.02.021
[7] 常二梅, 刘建锋, 黄跃宁, 等. 岷江柏野生居群和迁地保护居群的遗传多样性比较[J]. 植物研究, 2022, 42(5): 772-779. [CHANG Ermei, LIU Jianfeng, HUANG Yuening, et al. Comparison of genetic diversity between wild and ex-situ conservation populations of Cupressus chengiana [J]. Bulletin of Botanical Research, 2022, 42(5): 772-779] DOI: 10.7525/j. issn.1673-5102.2022.05.008
[8] 魏海龙. 白龙江流域岷江柏木种群结构特征分析及更新研究[D]. 兰州: 甘肃农业大学, 2018: 1-48. [WEI Hailong. Structural analysis and regeneration of Cupressus chengiana population in the Bailong River Basin [D].Lanzhou: Gansu Agricultural University, 2018: 1-48]
[9] 刘鑫, 包维楷. 我国岷江柏林分类及群落特征[J]. 广西植物, 2011, 31(5): 608-613+640. [LIU Xin, BAO Weikai. Community classification and structure of Cupressus chenegiana forest [J]. Guihaia, 2011, 31(5): 608-613+640] DOI: 10.3969/j.issn.1000-3142.2011.05.009
[10] 徐峥静茹, 龚良春, 蔡蕾, 等. 珍稀濒危植物岷江柏古树种子形态及萌发特性[J]. 四川林业科技, 2023, 44(6): 110-116. [XU Zhengjingru, GONG Liangchun, CAI Lei, et al. Seed morphology and germination characteristics of rare and endangered plant Cupressus chengiana [J]. Journal of Sichuan Forestry Science and Technology, 2023, 44(6): 110-116] DOI: 10.12172/202303160001
[11] PENG Yan, YANG Wanqin, LI Jun, et al. Contribution of soil fauna to foliar litter-mass loss in winter in an ecotone between dry valley and montane forest in the upper reaches of the Minjiang River [J]. Plos One, 2015, 10(4): e0124605. DOI: 10.1371/journal.pone.0124605
[12] ZHANG Miaomiao, LIU Shun, CAO Xiangwen, et al. The effects of ectomycorrhizal and saprotropic fungi on soil nitrogen mineralization differ from those of arbuscular and ericoid mycorrhizal fungi on the eastern Qinghai-Tibetan Plateau [J]. Frontiers in Plant Science, 2023, 13: 1069730. DOI: 10.3389/fpls.2022.1069730
[13] 袁志忠. 岷江柏种群结构及其特征研究[J]. 贵州农业科学, 2009, 37(10): 167-169. [YUAN Zhizhong. Study on population structure and characteristics of Cupressus chengiana [J]. Guizhou Agricultural Sciences, 2009, 37(10): 167-169]
[14] 冯秋红, 史作民, 徐峥静茹, 等. 岷江柏天然种群种实表型变异特征[J]. 应用生态学报, 2017, 28(3): 748-756. [FENG Qiuhong, SHI Zuomin, XU Zhengjingru, et al. Phenotypic variation in cones and seeds of natural Cupressus chengiana populations in China [J]. Chinese Journal of Applied Ecology, 2017, 28(3): 748-756] DOI: 10.13287/ j.1001-9332.201703.001
[15] 徐峥静茹, 汪清平, 冯秋红, 等. 温度对不同种源地岷江柏种子发芽的影响[J]. 西部林业科学, 2017, 46(2): 107-112. [XU Zhengjingru, WANG Qingping, FENG Qiuhong, et al. Effect of temperature on the germination of Cupressus chengiana S. Y. Hu seeds from different provenances [J]. Journal of West China Forestry Science, 2017, 46(2): 107-112] DOI: 10.16473/j.cnki.xblykx1972.2017.02.019
[16] ZHANG Zilong, MA Liying, YAO Hongbin, et al. The complete chloroplast genome of Cupressus chengiana [J]. Conservation Genetics Resources, 2017, 9(3): 347-349. DOI: 10.1007/s12686-016-0675-z
[17] LU Xu, XU Haiyan, LI Zhonghu, et al. Genetic diversity and conservation implications of four Cupressus species in China as revealed by microsatellite markers [J]. Biochemical Genetics, 2014, 52(3-4): 181-202. DOI: 10.1007/s10528-013-9638-1
[18] LI Jialiang, MILNE R I, RU Dafu, et al. Allopatric divergence and hybridization within Cupressus chengiana(Cupressaceae), a threatened conifer in the northern Hengduan Mountains of western China [J]. Molecular Ecology, 2020, 29(7): 1250-1266. DOI: 10.1111/mec.15407
[19] HAO Bingqing, LI Wang, MU Linchun, et al. A study of conservation genetics in Cupressus chengiana, an endangered endemic of China, using ISSR markers [J]. Biochemical Genetics, 2006, 44(1-2): 29-43. DOI: 10.1007/s10528-006-9011-8
[20] XU Tingting, WANG Qian, OLSON M S, et al. Allopatric divergence, demographic history, and conservation implications of an endangered conifer Cupressus chengiana in the eastern Qinghai-Tibet Plateau [J]. Tree Genetics & Genomes, 2017, 13(5): 100. DOI: 10.1007/s11295-017-1183-3
[21] PANG Xueyong, BAO Weikai, ZHANG Yongmei. Evaluation of soil fertility under different Cupressus chengiana forests using multivariate approach [J]. Pedosphere, 2006, 16(5): 602-615. DOI: 10.1016/S1002-0160(06)60094-5
[22] XU Tingting, ABBOTT R J, MILNE R I, et al. Phylogeography and allopatric divergence of cypress species(Cupressus L.)in the Qinghai-Tibetan Plateau and adjacent regions [J]. BMC Evolutionary Biology, 2010, 10: 194. DOI: 10.1186/1471-2148-10-194
[23] 陈刚, 刘四华. 大渡河流域水电开发环境保护研究与实践[J]. 水力发电, 2010, 36(6): 29-32. [CHEN Gang, LIU Sihua. Environment protection study and practice for hydropower development in Dadu River basin [J]. Water Power, 2010, 36(6): 29-32]
[24] 袁志忠, 包维楷, 何丙辉. 川西地区岷江柏种群生命表与生存分析[J]. 云南植物研究, 2004, 26(4): 373-381. [YUAN Zhizhong, BAO Weikai, HE Binghui. Life table and survival analysis of Cupressus chengian population in the western of Sichuan, China [J]. Acta Botanica Yunnanica, 2004, 26(4): 373-381]
[25] YANG Heng, LI Jialiang, MILNE R I, et al. Genomic insights into the genotype-environment mismatch and conservation units of a Qinghai-Tibet Plateau endemic cypress under climate change [J]. Evolutionary Applications, 2022, 15(6): 919-933. DOI: 10.1111/eva.13377
[26] GEBREWAHID Y, ABREHE S, MERESA E, et al. Current and future predicting potential areas of Oxytenanthera abyssinica(A. Richard)using MaxEnt model under climate change in Northern Ethiopia [J]. Ecological Processes, 2020, 9(1): 6. DOI: 10.1186/s13717-019-0210-8
[27] LI Shuai, DONG Shikui, FU Yongshuo, et al. Air or soil temperature matters the responses of alpine plants in biomass accumulation to climate warming [J]. Science of the Total Environment, 2022, 844: 157141. DOI: 10.1016/j.scitotenv.2022.157141
[28] 庞学勇, 包维楷. 岷江柏各地理居群生长状况及气候因子分析[J]. 生态环境, 2005, 14(4): 466-472. [PANG Xueyong, BAO Weikai. Analysis of growth condition and climate factors in different geographical population of Cupressus chengiana [J]. Ecology and Environment, 2005, 14(4): 466-472] DOI: 10.16158/j.cnki.1674-5906.2005.04.003
[29] 郭明明, 张远东, 王晓春, 等. 升温突变对川西马尔康树木生长的影响[J]. 生态学报, 2015, 35(22): 7464-7474. [GUO Mingming, ZHANG Yuandong, WANG Xiaochun, et al. Effects of abrupt warming on main conifer tree rings in Markang, Sichuan, China [J]. Acta Ecologica Sinica, 2015, 35(22): 7464-7474] DOI: 10.5846 / stxb201404140715
[30] 周桔, 杨明, 文香英, 等. 加强植物迁地保护,促进植物资源保护和利用[J]. 中国科学院院刊, 2021, 36(4): 417-424. [ZHOU Ju, YANG Ming, WEN Xiangying, et al. Strengthen Ex Situ conservation of plants and promote protection and utilization of plant resources [J]. Bulletin of Chinese Academy of Sciences, 2021, 36(4): 417-424] DOI: 10.16418/j.issn.1000-3045. 20210225101
[31] 蒋亚芳, 田静, 刘增力, 等. 全国重点保护野生植物资源现状及保护策略[J]. 林业资源管理, 2023, 52(4): 1-10. [JIANG Yafang, TIAN Jing, LIU Zengli, et al. The resource status and conservation strategies of national key protected wild plants in China [J]. Forest Resources Management, 2023, 52(4): 1-10] DOI: 10.13466/j.cnki.lyzygl.2023.04.001
[32] 林勇, 刘凯, 张文, 等. 大渡河上游天然岷江柏木移植试验及种质资源保存[J]. 四川林业科技, 2019, 40(2): 94-98. [LIN Yong, LIU Kai, ZHANG Wen, et al. Transplant experiments and germplasm conservation of natural Cupressus chengiana in the upper reaches of the Dadu River [J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(2): 94-98] DOI: 10.16779/j.cnki.1003-5508.2019.02.021
[33] 常訸, 薛联芳, 刘四华, 等. 移栽岷江柏生长生理特性及影响因素[J]. 东北林业大学学报, 2023, 51(9): 15-20+33. [CHANG He, XUE Lianfang, LIU Sihua, et al. Growth and physiological traits of transplanting Cupressus chengiana and influencing factors [J]. Journal of Northeast Forestry University, 2023, 51(9): 15-20+33] DOI: 10.13759/j.cnki.dlxb.2023.09.008
[34] 张学慧. 野生植物资源多样性保护的法规体系与应用研究[J]. 分子植物育种, 2023, 21(22): 7571-7576. [ZHANG Xuehui. Regulatory system and application research on biodiversity conservation of wild plant resources [J]. Molecular Plant Breeding, 2023, 21(22): 7571-7576] DOI: 10.13271/j.mpb.021.007571
[35] 贺维, 彭丽君, 杨育林, 等. 岷江干旱河谷岷江柏人工林群落结构和物种多样性研究[J]. 四川林业科技, 2019, 40(6): 25-31. [HE Wei, PENG Lijun, YANG Yulin, et al. The stucture and species diversity of Cupressus chengiana plantation in dry valleys of the Minjiang River area [J]. Journal of Sichuan Forestry Science and Technology, 2019, 40(6): 25-31] DOI: 10.16779/j.cnki.1003-5508.2019.06.005
[36] WU Lin, OUYANG Yurong, CAI Ling, et al. Ecological restoration approaches for degraded muddy coasts: Recommendations and practice [J]. Ecological Indicators, 2023, 149: 110182. DOI: 10.1016/j.ecolind.2023.110182
[37] 冯秋红, 缪国辉, 徐峥静茹, 等. 施氮对干旱河谷岷江柏(Cupressus chengiana)幼苗光合生理特征的影响[J]. 西南农业学报, 2020, 33(7): 1455-1460. [FENG Qiuhong, MIAO Guohui, XU Zhengjingru, et al. Effects of nitrogen application on photosynthetic physiological characteristics of Cupressus chengiana [J]. Southwest China Journal of Agricultural Sciences, 2020, 33(7): 1455-1460] DOI: 10.16213/j.cnki.scjas.2020.7.018
[38] 邵芳丽, 宫渊波, 关灵, 等. 水、氮对岷江柏幼苗水分利用率及相关因子的影响[J]. 东北林业大学学报, 2011, 39(9): 26-30. [SHAO Fangli, GONG Yuanbo, GUAN Ling, et al. Effects of different levels of N-fertilizer and water conditions on water use efficiency and related factors of Cupressus chengiana Seedlings [J]. Journal of Northeast Forestry University, 2011, 39(9): 26-30] DOI: 10.13759/j.cnki.dlxb.2011.09.037
[39] 胡慧, 杨雨, 包维楷, 等. 干旱河谷微生境变化对乡土植物幼苗定植的影响[J]. 植物生态学报, 2020, 44(10): 1028-1039. [HU Hui, YANG Yu, BAO Weikai, et al. Effects of microhabitat changes on seedling establishment of native plants in a dry valley [J]. Chinese Journal of Plant Ecology, 2020, 44(10): 1028-1039] DOI: 10.17521/cjpe.2020.0216
[40] 朱林海, 包维楷, 何丙辉. 岷江干旱河谷典型地段整地造林效果评估[J]. 应用与环境生物学报, 2009, 15(6): 774-780. [ZHU Linhai, BAO Weikai, HE Binghui. Assessment on ecological restoration effect of afforestation with Cupressus chengiana seedlings in the dry Minjiang River valley, Southwestern China [J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(6): 774-780] DOI: 10.3724/SP.J.1145.2009.00774
[41] LABUSOVA J, KONRADOVA H, LIPAVSKA H. The endangered Saharan cypress(Cupressus dupreziana): Do not let it get into Charon's boat [J]. Planta, 2020, 251(3): 63. DOI: 10.1007/s00425-020-03358-6
[42] HAZUBSKA-PRZYBYL T. Propagation of juniper species by plant tissue culture: A mini-review [J]. Forests, 2019, 10(11): 1028. DOI: 10.3390/f10111028
[43] AALIPOUR H, NIKBAKHT A, ETEMADI N, et al. Co-inoculation of Arizona cypress with mycorrhizae and rhizobacteria affects biomass, nutrient status, water-use efficiency, and glomalin-related soil protein concentration [J]. Urban Forestry & Urban Greening, 2021, 60: 127050. DOI: 10.1016/j.ufug.2021.127050
[44] AALIPOUR H, NIKBAKHT A, ETEMADI N. Physiological response of Arizona cypress to Cd-contaminated soil inoculated with arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria [J]. Rhizosphere, 2021, 18: 100354. DOI: 10.1016/j.rhisph.2021.100354
[45] AALIPOUR H, NIKBAKHT A, ETEMADI N, et al. Biochemical response and interactions between arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria during establishment and stimulating growth of Arizona cypress(Cupressus arizonica G.)under drought stress [J]. Scientia Horticulturae, 2020, 261: 108923. DOI: 10.1016/j.scienta.2019.108923
[46] ZHANG Min, YANG Lin, HAO Ruqian, et al. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube(Ziziphus jujuba)and their potential to enhance drought tolerance [J]. Plant and Soil, 2020, 452(1-2): 423-440. DOI: 10.1007/s11104-020-04582-5
[47] GOWTHAM H G, DURAIVADIVEL P, AYUSMAN S, et al. ABA analogue produced by Bacillus marisflavi modulates the physiological response of Brassica juncea L. under drought stress [J]. Applied Soil Ecology, 2021, 159: 103845. DOI: 10.1016/j.apsoil.2020.103845
[48] WANG Sijia, REN Ying, HAN Lina, et al. Insights on the impact of arbuscular mycorrhizal symbiosis on Eucalyptus grandis tolerance to drought stress [J]. Microbiology Spectrum, 2023, 11(2): 04381-22. DOI: 10.1128/spectrum.04381-22
[49] GHOSH D, GUPTA A, MOHAPATRA S. A comparative analysis of exopolysaccharide and phytohormone secretions by four drought-tolerant rhizobacterial strains and their impact on osmotic-stress mitigation in Arabidopsis thaliana [J]. World Journal of Microbiology and Biotechnology, 2019, 35(6): 90. DOI: 10.1007/s11274-019-2659-0