[1]杨太强,郭晓军,李 泳*,等.泥石流颗粒组成的动力演化[J].山地学报,2024,(5):662-671.[doi:10.16089/j.cnki.1008-2786.000852]
 YANG Taiqiang,GUO Xiaojun,LI Yong*,et al.Kinetic Evolution of Debris Flow Grain Composition[J].Mountain Research,2024,(5):662-671.[doi:10.16089/j.cnki.1008-2786.000852]
点击复制

泥石流颗粒组成的动力演化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第5期
页码:
662-671
栏目:
山地灾害
出版日期:
2024-10-20

文章信息/Info

Title:
Kinetic Evolution of Debris Flow Grain Composition
文章编号:
1008-2786-(2024)5-662-10
作者:
杨太强12郭晓军2李 泳2*刘晶晶2蒋 玉3
(1.中国电建集团昆明勘测设计研究院有限公司,昆明 650051; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610299; 3.保山学院 工程技术学院,云南 保山 678000)
Author(s):
YANG Taiqiang12 GUO Xiaojun2 LI Yong2* LIU Jingjing2 JIANG Yu3
(1. PowerChina Kunming Engineering Corporation Limited, Kunming 650051, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610029, China; 3. School of Engineering and Technology, Baoshan University, Baoshan 678000, Yunnan, China)
关键词:
泥石流 颗粒分布 动力调节 流动性
Keywords:
debris flow grain distribution kinetic regulation fluidity
分类号:
TU431
DOI:
10.16089/j.cnki.1008-2786.000852
文献标志码:
A
摘要:
泥石流物质具有宽级配颗粒组成,以往研究都用物源或堆积样本作为流体物质的代表,且传统的粒度分析参数不能对其进行区分。本文运用土体颗粒的普适性标度分布函数,通过蒋家沟的样本数据,揭示了泥石流物源、流体和堆积的标度分布参数具有显著的区别。在此基础上,运用蒋家沟泥石流物源土体为实验材料,设计并实施了动力搅拌实验及坍落实验,旨在了解颗粒构成在运动时所发生的变化和它对泥石流流动性的影响。研究表明:(1)经过动力搅拌作用后,颗粒组成呈现显著的规律性变化,标度分布的两个参数由离散状态向负幂关联过渡。(2)在足够的动力搅拌影响下,粒径分布将转变为一种稳定的模式,对应于泥石流的最佳流动性,表现为比表面积、坍落扩展度和扩散面积等指标处于稳定高值。实验结果展示了泥石流成分的变异如何影响其运动过程,这对于构建更加完整的泥石流动力学理论模型具有重要意义。
Abstract:
Debris flow fluids are characterized by a broad grain size distribution(GSD), which undergo constant variation in composition in movements. Previous studies used source or deposition samples as representatives of the fluid materials, but they failed to distinguish their gradations in phrases if only via classical granulometric parameters to be used by traditional grain size analysis.
In this study, a universal scaling distribution function of GSD was applied to reveal significant differences in the scaling distribution parameters among the source, fluid, and deposition of debris flow based on sample data collected at the Jiangjiagou gully, a well-known debris flow observation site in Yunnan Province, China. On this basis, a series of dynamic mixing and slump tests were designed and conducted using soil samples from the debris flow source at Jiangjiagou as experimental materials, aiming to understand the changes in GSD during artificial movements and their impact on debris flow mobility.
(1)The GSD exhibited significant changes under dynamic mixing, with the two GSD parameters of scaling distribution: μ and Dc transitioning from an initial discrete state to a negative power-law correlation; (2)Under sufficient dynamic mixing, the GSD gradually transformed into a stable state, quite possibly corresponding to the optimal mobility of debris flows, manifested by stable high values in indicators such as specific surface area, slump spread, and diffusion area.
These experiments demonstrate how variations in debris flow composition affect its movement process, which is of great significance for constructing a more comprehensive theoretical model of debris flow dynamics.

参考文献/References:

[1] DEANGELI C. Pore water pressure contribution to debris flow mobility [J]. American Journal of Environmental Sciences, 2009, 5(4): 486-492. DOI: 10.3844/ajessp.2009.486.492
[2] MAJOR J J, PIERSON T C. Debris flow rheology: Experimental analysis of fine-grained slurries [J]. Water Resources Research, 1992, 28(3): 841-857. DOI: 10.1029/91WR02834
[3] ZANUTTIGH B, LAMBERTI A. Instability and surge development in debris flows [J]. Reviews of Geophysics, 2007, 45(3): RG3006. DOI: 10.1029/2005RG000175
[4] COUSSOT P, MEUNIER M. Recognition, classification and mechanical description of debris flows [J]. Earth Science Reviews, 1996, 40(3-4): 209-227. DOI: 10.1016/0012-8252(95)00065-8
[5] TAKAHASHI T. Debris flow: Mechanics, prediction and countermeasures [M]. London: Taylor & Francis, 2007: 1-428. DOI: 10.1201/9780203946282
[6] SAVAGE S B. The mechanics of rapid granular flows [J]. Advances in Applied Mechanics, 1984, 24(87): 289-366. DOI: 10.1016/S0065-2156(08)70047-4
[7] 李泳, 苟万春, 王保亮, 等. 颗粒组成与泥石流运动的涨落[J]. 山地学报, 2016, 34(4): 468-475. [LI Yong, GOU Wanchun, WANG Baoliang, et al. Grain composition and the fluctuation of debris flow motion [J]. Mountain Research, 2016, 34(4): 468-475] DOI: 10.16089/j.cnki.1008-2786.000152
[8] LI Yong, LIU Jingjing, SU Fenghuan, et al. Relationship between grain composition and debris flow characteristics: A case study of the Jiangjia Gully in China [J]. Landslides, 2015, 12(1): 19-28. DOI: 10.1007/s10346-014-0475-z
[9] LI Yong, WANG Baoliang, ZHOU Xiaojun, et al. Variation in grain size distribution in debris flow [J]. Journal of Mountain Science, 2015, 12(3): 682-688. DOI: 10.1007/s11629-014-3351-3
[10] IVERSON R M, VALLANCE J W. New views of granular mass flows [J]. Geology, 2001, 29(2): 115-118. DOI: 10.1130/0091-7613(2001)0292.0.CO; 2
[11] IVERSON R M, DENLINGER R P. Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 537-552. DOI: 10.1029/2000JB900329
[12] PUDASAINI S P. A general two-phase debris flow model [J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03010. DOI: 10.1029/2011JF002186
[13] WANG Baoliang, LI Yong, LIU Daochuan, et al. Debris flow density determined by grain composition [J]. Landslides, 2018, 15: 1205-1213. DOI: 10.1007/s10346-017-0912-x
[14] YANG Taiqiang, LI Yong, ZHANG Qishu, et al. Calculating debris flow density based on grain-size distribution [J]. Landslides, 2019, 16(3): 515-522. DOI: 10.1007/s10346-018-01130-2
[15] LIU Daochuan, LI Yong, YOU Yong, et al. Velocity of debris flow determined by grain composition [J]. Journal of Hydraulic Engineering, 2020, 146(8): 06020010. DOI: 10.1061/(ASCE)HY.1943-7900.0001761
[16] LIU Daochuan, YOU Yong, LIU Jinfeng, et al. Spatial-temporal distribution of debris flow impact pressure on rigid barrier [J]. Journal of Mountain Science, 2019, 16(4): 793-805. DOI: 10.1007/s11629-018-5316-4
[17] 杨太强. 泥石流颗粒分布的动力学效应[D]. 中国科学院大学(中国科学院、水利部成都山地灾害与环境研究所), 2021: 1-200. [YANG Taiqiang. Dynamic effect of debris flow grain size distribution [D]. University of Chinese Academy of Sciences(Institute of Mountain Hazards and Environment, CAS), 2021: 1-200] DOI: 10.27525/d.cnki.gkchs.2021.000002
[18] 赵惠林, 陈英燕. 泥石流细颗粒浆体的有效浓度[J]. 泥沙研究, 1992(2): 20-25. [ZHAO Huilin, CHEN Yingyan. The effective concentration of fine particle slurry of debris flow [J]. Journal of Sediment Research, 1992(2): 20-25] DOI: 10.16239/j.cnki.0468-155x.1992.02.003
[19] O'BRIEN J S, JULIEN P Y. Laboratory analysis of mudflow properties [J]. Journal of Hydraulic Engineering, 1988, 114(8): 877-887. DOI: 10.1061/(ASCE)0733-9429(1988)114:8(877)
[20] PHILLIPS C J, DAVIES T R H. Determining rheological parameters of debris flow material [J]. Geomorphology, 1991, 4(2): 101-110. DOI: 10.1016/0169-555X(91)90022-3
[21] COUSSOT P, LAIGLE D, ARATTANO M, et al. Direct determination of rheological characteristics of debris flow [J]. Journal of Hydraulic Engineering, 1998, 124(8): 865-868. DOI: 10.1061/(ASCE)0733-9429(2000)126:2(158)
[22] SAKAI Y, HOTTA N, KANEKO T, et al. Effects of grain-size composition on flow resistance of debris flows: Behavior of fine sediment [J]. Journal of Hydraulic Engineering, 2019, 145(5): 06019004. DOI: 10.1061/(ASCE)HY.1943-7900.0001586
[23] ANCEY C, JORROT H. Yield stress for particle suspensions within a clay dispersion [J]. Journal of Rheology, 2001, 45(2): 297-319. DOI: 10.1122/1.1343879
[24] TAKAHASHI T. Mechanical characteristics of debris flow [J]. ASCE J Hydraul Div, 1978, 104(8): 1153-1169. DOI: 10.1061/JYCEAJ.0005046
[25] SCHIPPA L, PAVAN S. Numerical modelling of catastrophic events produced by mud or debris flows [J]. International Journal of Safety Security Engineering, 2011, 1(4): 403-423. DOI: 10.2495/SAFE-V1-N4-403-422
[26] DE HAAS T, BRAAT L, LEUVEN J R F W, et al. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1949-1971. DOI: 10.1002/2015JF003525
[27] LI Yong, ZHOU Xiaojun, SU Pengcheng, et al. A scaling distribution for grain composition of debris flow [J]. Geomorphology, 2013, 45(1): 1-7. DOI: 10.1016/j.geomorph.2013.03.015
[28] ZHANG Jun, LI Yong, YANG Taiqiang, et al. A universal grain-size distribution of soil with scaling invariance [J]. European Journal of Soil Science, 2023, 74(2): e13354. DOI: 10.1111/ejss.13354
[29] MAJOR J J, IVERSON R M. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins [J]. Geological Society of America Bulletin, 1999, 111(10): 1424-1434. DOI: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO; 2
[30] WHIPPLE K X, DUNNE T. The influence of debris-flow rheology on fan morphology, Owens Valley, California [J]. Geological Society of America Bulletin, 1992, 104(7): 887-900. DOI: 10.1130/0016-7606(1992)1042.3.CO; 2
[31] SCHATZMANN M, BEZZOLA G R, MINOR H E, et al. Rheometry for large particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry [J]. Rheologica Acta, 2009, 48(7): 715-733. DOI: 10.1007/s00397-009-0364-x
[32] 王裕宜, 詹钱登, 严璧玉. 泥石流体的流变特性与运移特征[M]. 长沙: 湖南科学技术出版社, 2014: 1-502. [WANG Yuyi, JAN Chyandeng, YAN Biyu. Debris-flow rheology and movement [M]. Changsha: Hunan Science & Technology Press, 2014: 1-502]
[33] PETERSEN L W, MOLDRUP P, JACOBSEN O H, et al. Relations between specific surface area and soil physical and chemical properties [J]. Soil Science, 1996, 161(1): 9-21. DOI: 10.1097/00010694-199601000-00003
[34] COUSSOT P, PROUST S, ANCEY C. Rheological interpretation of deposits of yield stress fluids [J]. Journal of Non-Newtonian Fluid Mechanics, 1996, 66(1): 55-70. DOI: 10.1016/0377-0257(96)01474-7
[35] PIERSON T C. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility [J]. Sedimentology, 1981, 28(1): 49-60. DOI: 10.1111/j.1365-3091.1981.tb01662.x
[36] HUTCHINSON J N. A sliding-consolidation model for flow slides [J]. Canadian Geotechnical Journal, 1986, 23(2): 115-126. DOI: 10.1139/t86-021

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(5):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(5):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(5):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(5):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(5):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(5):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(5):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(5):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(5):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(5):495.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023- 02-02; 改回日期(Accepted date):2024-10-15
基金项目(Foundation item): 国家自然科学基金(42322703, 42271092, U22A20602)。[National Natural Science Foundation of China(42322703, 42271092, U22A20602)]
作者简介(Biography): 杨太强(1990-),男,河南信阳人,博士,主要研究方向:岩土工程。[YANG Taiqiang(1990-), male, born in Xinyang,Henan Province, Ph.D., research on geotechnical engineering] E-mail: ytq7958@163.com
*通讯作者(Corresponding author): 李泳(1967-),男,研究员,主要研究方向:泥石流的系统性。[LI Yong(1967-), male, professor, research on the systematic behaviors of debris flows] E-mail: ylie@imde.ac.cn
更新日期/Last Update: 2024-09-30