参考文献/References:
[1] DEANGELI C. Pore water pressure contribution to debris flow mobility [J]. American Journal of Environmental Sciences, 2009, 5(4): 486-492. DOI: 10.3844/ajessp.2009.486.492
[2] MAJOR J J, PIERSON T C. Debris flow rheology: Experimental analysis of fine-grained slurries [J]. Water Resources Research, 1992, 28(3): 841-857. DOI: 10.1029/91WR02834
[3] ZANUTTIGH B, LAMBERTI A. Instability and surge development in debris flows [J]. Reviews of Geophysics, 2007, 45(3): RG3006. DOI: 10.1029/2005RG000175
[4] COUSSOT P, MEUNIER M. Recognition, classification and mechanical description of debris flows [J]. Earth Science Reviews, 1996, 40(3-4): 209-227. DOI: 10.1016/0012-8252(95)00065-8
[5] TAKAHASHI T. Debris flow: Mechanics, prediction and countermeasures [M]. London: Taylor & Francis, 2007: 1-428. DOI: 10.1201/9780203946282
[6] SAVAGE S B. The mechanics of rapid granular flows [J]. Advances in Applied Mechanics, 1984, 24(87): 289-366. DOI: 10.1016/S0065-2156(08)70047-4
[7] 李泳, 苟万春, 王保亮, 等. 颗粒组成与泥石流运动的涨落[J]. 山地学报, 2016, 34(4): 468-475. [LI Yong, GOU Wanchun, WANG Baoliang, et al. Grain composition and the fluctuation of debris flow motion [J]. Mountain Research, 2016, 34(4): 468-475] DOI: 10.16089/j.cnki.1008-2786.000152
[8] LI Yong, LIU Jingjing, SU Fenghuan, et al. Relationship between grain composition and debris flow characteristics: A case study of the Jiangjia Gully in China [J]. Landslides, 2015, 12(1): 19-28. DOI: 10.1007/s10346-014-0475-z
[9] LI Yong, WANG Baoliang, ZHOU Xiaojun, et al. Variation in grain size distribution in debris flow [J]. Journal of Mountain Science, 2015, 12(3): 682-688. DOI: 10.1007/s11629-014-3351-3
[10] IVERSON R M, VALLANCE J W. New views of granular mass flows [J]. Geology, 2001, 29(2): 115-118. DOI: 10.1130/0091-7613(2001)0292.0.CO; 2
[11] IVERSON R M, DENLINGER R P. Flow of variably fluidized granular masses across three-dimensional terrain 1. Coulomb mixture theory [J]. Journal of Geophysical Research: Solid Earth, 2001, 106(B1): 537-552. DOI: 10.1029/2000JB900329
[12] PUDASAINI S P. A general two-phase debris flow model [J]. Journal of Geophysical Research: Earth Surface, 2012, 117(F3): F03010. DOI: 10.1029/2011JF002186
[13] WANG Baoliang, LI Yong, LIU Daochuan, et al. Debris flow density determined by grain composition [J]. Landslides, 2018, 15: 1205-1213. DOI: 10.1007/s10346-017-0912-x
[14] YANG Taiqiang, LI Yong, ZHANG Qishu, et al. Calculating debris flow density based on grain-size distribution [J]. Landslides, 2019, 16(3): 515-522. DOI: 10.1007/s10346-018-01130-2
[15] LIU Daochuan, LI Yong, YOU Yong, et al. Velocity of debris flow determined by grain composition [J]. Journal of Hydraulic Engineering, 2020, 146(8): 06020010. DOI: 10.1061/(ASCE)HY.1943-7900.0001761
[16] LIU Daochuan, YOU Yong, LIU Jinfeng, et al. Spatial-temporal distribution of debris flow impact pressure on rigid barrier [J]. Journal of Mountain Science, 2019, 16(4): 793-805. DOI: 10.1007/s11629-018-5316-4
[17] 杨太强. 泥石流颗粒分布的动力学效应[D]. 中国科学院大学(中国科学院、水利部成都山地灾害与环境研究所), 2021: 1-200. [YANG Taiqiang. Dynamic effect of debris flow grain size distribution [D]. University of Chinese Academy of Sciences(Institute of Mountain Hazards and Environment, CAS), 2021: 1-200] DOI: 10.27525/d.cnki.gkchs.2021.000002
[18] 赵惠林, 陈英燕. 泥石流细颗粒浆体的有效浓度[J]. 泥沙研究, 1992(2): 20-25. [ZHAO Huilin, CHEN Yingyan. The effective concentration of fine particle slurry of debris flow [J]. Journal of Sediment Research, 1992(2): 20-25] DOI: 10.16239/j.cnki.0468-155x.1992.02.003
[19] O'BRIEN J S, JULIEN P Y. Laboratory analysis of mudflow properties [J]. Journal of Hydraulic Engineering, 1988, 114(8): 877-887. DOI: 10.1061/(ASCE)0733-9429(1988)114:8(877)
[20] PHILLIPS C J, DAVIES T R H. Determining rheological parameters of debris flow material [J]. Geomorphology, 1991, 4(2): 101-110. DOI: 10.1016/0169-555X(91)90022-3
[21] COUSSOT P, LAIGLE D, ARATTANO M, et al. Direct determination of rheological characteristics of debris flow [J]. Journal of Hydraulic Engineering, 1998, 124(8): 865-868. DOI: 10.1061/(ASCE)0733-9429(2000)126:2(158)
[22] SAKAI Y, HOTTA N, KANEKO T, et al. Effects of grain-size composition on flow resistance of debris flows: Behavior of fine sediment [J]. Journal of Hydraulic Engineering, 2019, 145(5): 06019004. DOI: 10.1061/(ASCE)HY.1943-7900.0001586
[23] ANCEY C, JORROT H. Yield stress for particle suspensions within a clay dispersion [J]. Journal of Rheology, 2001, 45(2): 297-319. DOI: 10.1122/1.1343879
[24] TAKAHASHI T. Mechanical characteristics of debris flow [J]. ASCE J Hydraul Div, 1978, 104(8): 1153-1169. DOI: 10.1061/JYCEAJ.0005046
[25] SCHIPPA L, PAVAN S. Numerical modelling of catastrophic events produced by mud or debris flows [J]. International Journal of Safety Security Engineering, 2011, 1(4): 403-423. DOI: 10.2495/SAFE-V1-N4-403-422
[26] DE HAAS T, BRAAT L, LEUVEN J R F W, et al. Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments [J]. Journal of Geophysical Research: Earth Surface, 2015, 120(9): 1949-1971. DOI: 10.1002/2015JF003525
[27] LI Yong, ZHOU Xiaojun, SU Pengcheng, et al. A scaling distribution for grain composition of debris flow [J]. Geomorphology, 2013, 45(1): 1-7. DOI: 10.1016/j.geomorph.2013.03.015
[28] ZHANG Jun, LI Yong, YANG Taiqiang, et al. A universal grain-size distribution of soil with scaling invariance [J]. European Journal of Soil Science, 2023, 74(2): e13354. DOI: 10.1111/ejss.13354
[29] MAJOR J J, IVERSON R M. Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins [J]. Geological Society of America Bulletin, 1999, 111(10): 1424-1434. DOI: 10.1130/0016-7606(1999)111<1424:DFDEOP>2.3.CO; 2
[30] WHIPPLE K X, DUNNE T. The influence of debris-flow rheology on fan morphology, Owens Valley, California [J]. Geological Society of America Bulletin, 1992, 104(7): 887-900. DOI: 10.1130/0016-7606(1992)1042.3.CO; 2
[31] SCHATZMANN M, BEZZOLA G R, MINOR H E, et al. Rheometry for large particulated fluids: Analysis of the ball measuring system and comparison to debris flow rheometry [J]. Rheologica Acta, 2009, 48(7): 715-733. DOI: 10.1007/s00397-009-0364-x
[32] 王裕宜, 詹钱登, 严璧玉. 泥石流体的流变特性与运移特征[M]. 长沙: 湖南科学技术出版社, 2014: 1-502. [WANG Yuyi, JAN Chyandeng, YAN Biyu. Debris-flow rheology and movement [M]. Changsha: Hunan Science & Technology Press, 2014: 1-502]
[33] PETERSEN L W, MOLDRUP P, JACOBSEN O H, et al. Relations between specific surface area and soil physical and chemical properties [J]. Soil Science, 1996, 161(1): 9-21. DOI: 10.1097/00010694-199601000-00003
[34] COUSSOT P, PROUST S, ANCEY C. Rheological interpretation of deposits of yield stress fluids [J]. Journal of Non-Newtonian Fluid Mechanics, 1996, 66(1): 55-70. DOI: 10.1016/0377-0257(96)01474-7
[35] PIERSON T C. Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility [J]. Sedimentology, 1981, 28(1): 49-60. DOI: 10.1111/j.1365-3091.1981.tb01662.x
[36] HUTCHINSON J N. A sliding-consolidation model for flow slides [J]. Canadian Geotechnical Journal, 1986, 23(2): 115-126. DOI: 10.1139/t86-021
相似文献/References:
[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(5):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(5):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(5):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(5):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(5):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(5):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(5):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(5):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(5):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(5):495.