[1]王 浩,张金涛,代 林,等.基于数值模拟的泥石流拦挡坝群布局优化[J].山地学报,2024,(6):805-815.[doi:10.16089/j.cnki.1008-2786.000863]
 WANG Hao,ZHANG Jintao,DAI lin,et al.Layout Optimization of Debris Flow Check Dam Cascade Based on Numerical Simulation[J].Mountain Research,2024,(6):805-815.[doi:10.16089/j.cnki.1008-2786.000863]
点击复制

基于数值模拟的泥石流拦挡坝群布局优化
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
805-815
栏目:
山地灾害
出版日期:
2024-12-20

文章信息/Info

Title:
Layout Optimization of Debris Flow Check Dam Cascade Based on Numerical Simulation
文章编号:
1008-2786-(2024)6-805-11
作者:
王 浩1张金涛1代 林1王全才2王继华3
(1. 河南大学 建筑工程学院,河南 开封 475000; 2. 中国科学院、水利部成都山地灾害与环境研究所,成都 610213; 3. 河南省自然资源监测和国土整治院,郑州 450000)
Author(s):
WANG Hao1 ZHANG Jintao1 DAI lin1 WANG Quancai2 WANG Jihua3
(1. School of Civil Engineering and Architecture, Henan University, Kaifeng 475000, Henan, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610213, China; 3. Institute of Natural Resources Monitoring and Comprehensive Land Improvement of Henan Province, Zhengzhou 450000, China)
关键词:
泥石流 拦挡坝群 数值模拟 优化设计
Keywords:
debris flow debris flow check dam cascade numerical simulation layout optimization
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000863
文献标志码:
A
摘要:
在工程实践中,常采用拦挡坝群协同布局防治泥石流灾害。泥石流翻越首坝后,其运动状态会发生显著变化,次级坝体的受力状况以及整体的防治效果,均会受到坝体间距和坝体结构的重要影响。前期研究关注单一坝体,对坝群间距如何影响坝体承载模式及防治效果尚缺乏认识。本文基于野外实地勘察,利用ANSYS-Fluent的流固耦合模型,模拟在泥石流冲击作用下,多级拦挡坝的不同间距、坝型与坝体应力之间的关联。结合 RAMMS的Voellmy流变模型,对二郎山后山泥石流进行了多级拦挡坝设立间距的模拟分析。从坝体静力和防治效果两个方面,深入探讨了坝体间距的影响。研究结果表明:(1)在空库过流达到稳定流动状态后,泥石流浆体的总压力呈现出上小下大的层状分布特征。(2)与拱形坝相比,矩形坝所产生的应力和位移相对较小。首道坝体所承受的应力和位移均小于次级坝体。(3)设立两级拦挡坝对泥石流运动起到明显的调控作用。随着两级坝体间距不断扩大,拦挡坝所受位移与应力发生波动。当间距80 m时,两级拦挡坝的应力与位移均达到最大值,为最不利间隔。(4)随着坝体间距增加, 泥石流最大堆积高度与流速呈现先增大后减小的变化趋势。(5)当二郎山坡面泥石流拦挡坝的设立间隔为 40 m、100 m、120 m 时,防护效果较为理想。研究结果对多级泥石流拦挡坝的优化设计具有借鉴意义。
Abstract:
In engineering practice, a check dam cascade is arranged in a coordinated layout to prevent massive debris flow disasters. After a debris flow overtops the first dam of a dam cascade, its movement pattern undergoes significant changes, with the stress state in the second-level dam and the overall prevention efficiency being both greatly affected by the distance between dams as well as dam structure. Previous studies only concerned about the behaviors of a single dam in debris flow control design, lacking knowledge of how the spacing between dams affects their load-bearing patterns and prevention effectiveness.
In this paper, based on field investigation, a fluid-solid coupled model in ANSYS-Fluent was utilized to simulate the correlation among different spacings, types and stresses of multi-level check dams under the impact of debris flow. Combined with the Voellmy rheological model in RAMMS, a thorough analysis of the spacing of the dams was exemplified by a real debris flow gully, located at backslope of the Erlang Mountain, Sichuan, China. The influence of dam spacing was discussed from two aspects: dam body static force and prevention effectiveness.
(1)After achieving a stable state of overflow in dam reservoir, the total pressure of debris flow slurry on dam exhibited a laminar distribution with higher pressure at bottom and lower pressure at top.
(2)Compared with arched dams, the rectangular dam generated relatively smaller stress and displacement. The stress and displacement endured by the first-level dam body was both less than those in the secondary-level dam body.
(3)The establishment of a two-level check dam cascade provided a significant regulating effect on debris flow movement. With continuous expansion the spacing between two dam bodies, the displacement and stress in the second-level dam fluctuated. When the spacing was 80 m, the stresses and displacements in the two-level check dam both reached the maximum value, indicating the most unfavorable spacing.
(4)With the increase of dam spacing, the maximum accumulation height and velocity of debris flow showed a trend of increasing first and then decreasing.
(5)As for the real case of debris flow on the backslope of the Erlang Mountain, the protection effect was more satisfactory when the dam spacing were designed at intervals of 40 m, 100 m and 120 m.
This study has implications for optimal design of debris flow check dam cascade.

参考文献/References:

[1] 崔鹏, 邹强. 山洪泥石流风险评估与风险管理理论与方法[J]. 地理科学进展, 2016, 35(2): 137-147. [CUl Peng, ZOU Qiang. Theory and method of risk assessment and risk management of debris flows and flash floods [J]. Progress in Geography, 2016, 35(2): 137-147] DOI: 10.18306/dlkxjz.2016.02.001
[2] 陈宁生, 周海波, 卢阳, 等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版), 2013, 40(1): 50-58. [CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China [J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2013, 40(1): 50-58] DOI: 10.3969/j.issn.1671-9727.2013.01.008
[3] 石振明, 吴彬, 郑鸿超, 等. 泥石流防治措施与冲击力研究进展[J]. 地球科学, 2022, 47(12): 4339-4349. [SHI Zhenming, WU Bin, ZHENG Hongchao, et al. State of the art on prevention and control measures and impact model for debris flow [J]. Earth Science, 2022, 47(12): 4339-4349] DOI: 10.3799/dqkx.2022.376
[4] OSANAI N, MIZUNO H, MIZUYAMA T. Design standard of control structures against debris flow in Japan [J]. Journal of Disaster Research, 2010, 5(3): 307-314. DOI: 10.20965/jdr.2010.p0307
[5] SHIMA J, MORIYAMA H, KOKURYO H, et al. Prevention and mitigation of debris flow hazards by using steel open-type sabo dams [J]. International Journal of Erosion Control Engineering, 2016, 9(3): 135-144. DOI: 10.13101/ijece.9.135
[6] ZANUTTIGH B, LAMBERTI A. Experimental analysis of the impact of dry avalanches on structures and implication for debris flows [J]. Journal of Hydraulic Research, 2006, 44(4): 522-534. DOI: 10.1080/00221686.2006.9521703
[7] SHIEH C L, TING C H, PAN H W. Impulsive force of debris flow on a curved dam [J]. International Journal of Sediment Research, 2008, 23(2): 149-158.
[8] 王东坡, 张小梅. 泥石流冲击弧形拦挡坝动力响应研究[J]. 岩土力学, 2020, 41(12): 3851-3861. [WANG Dongpo, ZHANG Xiaomei. Study on dynamic response of debris flow impact arc-shaped dam [J]. Rock and Soil Mechanics, 2020, 41(12): 3851-3861] DOI: 10.16285/j.rsm.2020.0311
[9] SHEN Wei, LI Tonglu, LI Ping, et al. Numerical assessment for the efficiencies of check dams in debris flow gullies: A case study [J]. Computers and Geotechnics, 2020, 122: 103541. DOI: 10.1016/j.compgeo.2020.103541
[10] 郑仕超. 尾矿库溃坝泥石流冲击力及防护措施试验研究[D]. 石家庄: 石家庄铁道大学, 2019: 21-46. [ZHENG Shichao. Experimental study on impact and protection of the tailings debris flow [D]. Shijiazhuang: Shijiazhuang Tiedao University, 2019: 21-46]
[11] 陈露. 泥石流多级拦挡组合模式及参数分析[D]. 兰州: 兰州理工大学, 2016: 34-46. [CHEN Lu. Multistage block portfolio mode and parameter analysis of debris flow [D]. Lanzhou: Lanzhou University of Technology, 2016: 34-46]
[12] 王东坡, 瞿华南, 沈伟, 等. 考虑坝后淤积的泥石流冲击拦挡坝动力响应研究[J]. 工程科学与技术, 2021, 53(2): 1-9. [WANG Dongpo, QU Huanan, SHEN Wei, et al. Dynamic response analysis for debris flow dam with sediments [J]. Advanced Engineering Sciences, 2021, 53(2): 1-9] DOI: 10.15961/j.jsuese.202000449
[13] 瞿华南. 考虑坝后淤积作用下的泥石流冲击拦挡坝动力响应研究[D]. 成都: 成都理工大学, 2021: 20-33. [QU Huanan. Study on dynamic response of debris flow impact dam considering post-dam sedimentation [D]. Chengdu: Chengdu University of Technology, 2021: 20-33]
[14] VAGNON F, SEGALINI A. Debris flow impact estimation on a rigid barrier [J]. Natural Hazards and Earth System Sciences, 2016, 16(7): 1691-1697. DOI: 10.5194/nhess-16-1691-2016
[15] 刘兴荣, 魏新平, 陈豫津, 等. 基于增量加载法的泥石流拦挡坝抗冲击力数值模拟——以甘肃舟曲三眼峪沟泥石流拦挡坝为例[J]. 中国地质灾害与防治学报, 2021, 32(2): 78-83. [LIU Xingrong, WEI Xinping, CHEN Yujin, et al. Numerical simulation of impact resistance of debris flow dam: A case study of the debris flow dam in Sanyanyu Gully, Zhouqu County, Gansu Province [J]. The Chinese Journal of Geological Hazard and Control, 2021, 32(2): 78-83] DOI: 10.16031/j.cnki.issn.1003-8035.2021.02.11
[16] 李俊杰, 王秀丽, 冉永红. 泥石流块石冲击下新型拦挡坝动力响应试验研究[J]. 哈尔滨工程大学学报, 2018, 39(5): 889-896. [LI Junjie, WANG Xiuli, RAN Yonghong. Experimental study dynamic response of a new dam to the impact of block stones in debris flow [J]. Journal of Harbin Engineering University, 2018, 39(5): 889-896] DOI: 10.11990/jheu.201611032
[17] 苏洁, 周成, 陈生水, 等. 石笼拱柔性拦截坝新技术及其数值模拟[J]. 岩土工程学报, 2015, 37(2): 269-275. [SU Jie, ZHOU Cheng, CHEN Shengshui, et al. Numerical simulation of flexible gabion arch dam to prevent and control debris flow blocks [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 269-275] DOI: 10.11779/CJGE201502009
[18] 陈洪凯, 鲜学福, 唐红梅, 等. 泥石流冲击荷载的时频分析方法及应用[J]. 防灾减灾工程学报, 2011, 31(3): 255-260. [CHEN Hongkai, XIAN Xuefu, TANG Hongmei, et al. Time-frequency analysis method of debris flow impact loads and its application [J]. Journal of Disaster Prevention and Mitigation Engineering, 2011, 31(3): 255-260] DOI: 10.3969/j.issn.1672-2132.2011.03.004
[19] JEONG S, LEE K. Analysis of the impact force of debris flows on a check dam by using a coupled Eulerian-Lagrangian(CEL)method [J]. Computers and Geotechnics, 2019, 116: 103214. DOI: 10.1016/j.compgeo.2019.103214
[20] LIU Wei, YAN Shuaixing, HE Siming. A simple method to evaluate the performance of an intercept dam for debris-flow mitigation [J]. Engineering Geology, 2020, 276: 105771. DOI: 10.1016/j.enggeo.2020.105771
[21] 王东坡, 廖承兴, 瞿华南, 等. 坝后淤积条件下泥石流冲击拦挡坝动力响应研究[J]. 地球科学, 2024, 49(3): 1017-1027. [WANG Dongpo, LIAO Chengxing, QU Huanan. Study on dynamic response of debris flow impact on check dam with sediments [J]. Earth Science, 2024, 49(3): 1017-1027] DOI: 10.3799/dqkx.2022.424
[22] 张友谊, 古维扬, 黄琛. 基于模型试验的翻坝泥石流铲刮效应研究[J]. 灾害学, 2023, 38(3): 75-81+86. [ZHANG Youyi, GU Weiyang, HUANG Chen. Study on scraping effect of dam-overtopping debris flow based on model test [J]. Journal of Catastrophology, 2023, 38(3): 75-81+86] DOI: 10.3969/j.issn.1000-811X.2023.03.012
[23] WANG Hao, ZHANG Jintao, HU Qing, et al. Effect of channel confluence on the dynamics of debris flow in the Niutang Gully [J]. Natural Hazards, 2024. DOI: 10.1007/s11069-024-06861-1
[24] LIU Bo, HU Xiewen, MA Guotao, et al. Back calculation and hazard prediction of a debris flow in Wenchuan meizoseismal area, China [J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 3457-3474. DOI: 10.1007/s10064-021-02127-3
[25] 贾邦中, 吴义鹰, 冯文凯, 等. 龙川县米贝村1#泥石流灾害特征与运动过程[J]. 科学技术与工程, 2024, 24(9): 3576-3585. [JIA Bangzhong, WU Yiying, FENG Wenkai, et al. 1# debris flow disaster characteristics and movement process in Mibei Village, Longchuan County [J]. Science Technology and Engineering, 2024, 24(9): 3576-3585] DOI: 10.12404/j. issn.1671-1815.2304262
[26] 陈华勇, 柳金峰, 赵万玉, 等. 非透过性泥石流拦砂坝研究现状及展望[J]. 防灾减灾工程学报, 2016, 36(2): 323-330. [CHEN Huayong, LlU Jinfeng, ZHAO Wanyu, et al. A review and prospect: The study on the closed-type check dams [J]. Journal of Disaster Prevention and Mitigation Engineering, 2016, 36(2): 323-330] DOI: 10.13409/j.cnki.jdpme.2016.02.023
[27] 江民圣. ANSYS Workbench19.0基础入门与工程实践[M]. 北京: 人民邮电出版社, 2019: 322-337. [JIANG Minsheng. Introduction and engineering practice of ANSYS Workbench19.0 foundation [M]. Beijing: People's Posts and Telecommunications Press, 2019: 322-337]
[28] SL25-2006. 砌石坝设计规范[S]. 北京: 中国水利水电出版社, 2019. [SL25-2006. Design specification for stone masonry dams [S]. Beijing: China Water & Power Press, 2019]
[29] CHRISTEN M, KOWALSKI J, BARTELT P. RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain [J]. Cold Regions Science and Technology, 2010, 63(1-2): 1-14. DOI: 10.1016/j.coldregions.2010.04.005
[30] 唐邦兴, 周必凡, 吴积善. 中国泥石流[M]. 北京: 商务印书馆, 2000: 1-375. [TANG Bangxing, ZHOU Bifan, WU Jishan. Debris flow in China [M]. Beijing: The Commercial Press, 2000: 1-375]
[31] 四川省水利电力厅. 四川省中小流域暴雨洪水计算手册[M]. 成都: 四川省水利电力厅, 1984: 3-15. [Sichuan Provincial Water Resources and Electric Power Department. Rainstorm flood calculation manual for small and medium basins in Sichuan Province [M]. Chengdu: Sichuan Provincial Water Resources and Electric Power Department, 1984: 3-15]
[32] CHANG Ming, TANG Chuan, VAN ASCH T W J, et al. Hazard assessment of debris flows in the Wenchuan earthquake-stricken area, south west China [J]. Landslides, 2017, 14(17): 1783-1792. DOI: 10.1007/s10346-017-0824-9

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(6):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(6):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(6):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(6):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(6):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(6):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(6):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(6):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(6):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(6):495.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024- 05-28; 改回日期(Accepted date):2024-12-16
基金项目(Foundation item): 河南省科技攻关项目(232102321012,242102321007)。[Scientific Project of Henan Science and Technology Department(232102321012,242102321007)]
作者简介(Biography): 王浩(1986-),男,河南信阳人,博士,副教授,主要研究方向:地质灾害机理及防治技术。[WANG Hao(1986-), male, born in Xinyang, Henan Province, Ph.D., associate professor, research on mechanisms of geological hazards and prevention technologies] E-mail: wanghao8023@henu.edu.cn
更新日期/Last Update: 2024-11-30