[1]丁海涛,陈宁生*,吴铭洋,等.西藏高原雪崩灾害的地形约束与地貌分类[J].山地学报,2024,(6):895-902.[doi:10.16089/j.cnki.1008-2786.000870]
 DING Haitao,CHEN Ningsheng,et al.Geomorphological Recognition of Avalanches by Terrain Constraints in Tibetan Plateau, China[J].Mountain Research,2024,(6):895-902.[doi:10.16089/j.cnki.1008-2786.000870]
点击复制

西藏高原雪崩灾害的地形约束与地貌分类
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2024年第6期
页码:
895-902
栏目:
研究简报
出版日期:
2024-12-20

文章信息/Info

Title:
Geomorphological Recognition of Avalanches by Terrain Constraints in Tibetan Plateau, China
文章编号:
1008-2786-(2024)6-895-8
作者:
丁海涛13陈宁生23*吴铭洋3张馨月4
(1. 拉萨青藏高原科学研究中心,拉萨 850000; 2. 长江大学 地球科学学院,武汉 430100; 3. 中国科学院、水利部成都山地灾害与环境研究所,成都 610213; 4. 西藏大学 工学院,拉萨 850013)
Author(s):
DING Haitao1 3 CHEN Ningsheng2 3* WU Mingyang3 ZHANG Xinyue4
(1. Lhasa Qinghai-Xizang Plateau Scientific Research Center, Lhasa 850000, China; 2. School of Geosciences, Yangtze University, Wuhan 430100, China; 3. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610213, China; 4. School of Engineering, Tibet University, Lhasa 850013, China)
关键词:
雪崩灾害 灾害判识 发育规律 西藏高原
Keywords:
avalanche hazard hazard identification development pattern Tibetan Plateau
分类号:
P642. 22
DOI:
10.16089/j.cnki.1008-2786.000870
文献标志码:
B
摘要:
地形地貌是雪崩灾害发育过程中相对稳定的因素,是雪崩灾害判识的基础。西藏高原地貌形成与演化过程与中国其他高山存在差异性,导致其雪崩分类与机制不同。本研究基于西藏高原近10年来发生的122次雪崩灾害的编目数据,采用遥感分析、现场调查的研究方法,结合区域地貌演化历史的研究,系统总结了西藏高原雪崩灾害的时空发育规律。研究发现:(1)雪崩空间上集中在喜马拉雅和念青唐古拉山区的公路路段,时间上特别集中于2—4月份。(2)海拔高度、凹槽地貌和流域位置约束着雪崩灾害的规模与成灾位置。雪崩集中形成于海拔4000~4600 m 的高海拔山区,不同的凹槽地貌控制着雪崩灾害的发育,流域的中上游地貌与气候的交织作用促进了雪崩的发育。(3)结合区域的地貌演化规律,雪崩灾害可划分为冰斗型雪崩、夷平面型雪崩和沟头凹槽型雪崩,这一分类系统奠定了今后雪崩灾害判识的基础。本研究对西藏高原的雪崩灾害的认识、判识与减灾具有指导意义。
Abstract:
Topography is a relatively stable factor in the development process of avalanche disaster and serves as the foundation for identifying such hazards. The geomorphologic formation and evolution of the Tibetan Plateau is different from that of other plateaus in China, leading to different avalanche classifications and mechanisms.
Based on the cataloged data of 122 avalanche disasters in Tibetan Plateau over the past 10 years, this study systematically summarized the spatial and temporal developmental patterns of avalanche disasters in the Tibetan Plateau by research methods of remote sensing analysis and on-site investigation, combined with the history of regional geomorphic evolution.
(1)Avalanches were spatially concentrated in the highway sections of the Himalayan Mountain and the Nyainqentanglha Mountain regions, and temporally reached their peak especially from February to April.
(2)Elevation, trough landforms, and watershed location, working as elements of terrain constraint, controlled the scale and mechanism of avalanches in in avalanche-prone terrain. Avalanches were created in the high-altitude mountainous areas with an elevation of 4000-4600 m. Different trough landforms controlled the formation of avalanche hazards, and the intertwined effects of landforms and climate in the middle and upper reaches of the watershed promoted the development of avalanches.
(3)Combined with the geomorphological evolution of the region, the types of avalanche disasters were systematically classified into cirque-type avalanches, planate-type avalanches and gully-head trough-type avalanches, which laid the foundation for the identification of avalanche disasters in the future.
This study is of great significance in guiding the recognition, identification and mitigation of avalanche hazards in Tibet.

参考文献/References:

[1] 中国科学院兰州冰川冻土研究所. 雪崩及其防治[M]. 北京: 科学出版社, 1979: 56-65. [Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Avalanche and its control [M]. Beijing: Science Press, 1979: 56-65]
[2] PEREZ-GUILLEN C, TECHEL F, HENDRICK M, et al. Data-driven automated predictions of the avalanche danger level for dry-snow conditions in Switzerland [J]. Natural Hazards and Earth System Sciences, 2022, 22: 2031-2056. DOI: 10.5194/nhess-22-2031-2022
[3] 郝建盛, 李兰海. 雪崩灾害防治研究进展及展望[J]. 冰川冻土, 2022, 44(3): 762-770. [HAO Jiansheng, LI Lanhai. Research progress and prospect of snow avalanche disaster prevention and control [J]. Journal of Glaciology and Geocryology, 2022, 44(3): 762-770] DOI: 10.7522/j.issn.1000-0240.2022.0075
[4] HAO Jiansheng, ZHANG Zhengtao, LI Lanhai. Timing and identification of potential snow avalanche types: A case study of the central Tianshan Mountains [J]. Landslides, 2021, 18: 3845-3856. DOI: 10.1007/s10346-021-01766-7
[5] SCHWEIZER J, KRONHOLM K, WIESINGER T. Verification of regional snowpack stability and avalanche danger [J]. Cold Regions Science and Technology, 2003, 37(3): 277-288. DOI: 10.1016/S0165-232X(03)00070-3
[6] BARLOW J, FRANKLIN S E. Mapping snow avalanche chutes in the Canadian Rockies using Landsat TM and DEM data [J]. Canadian Journal of Remote Sensing, 2008, 34(6): 516-525. DOI: 10.5589/m08-072
[7] SCHWEIZER J, MITTERER C, TECHEL F, et al. On the relation between avalanche occurrence and avalanche danger level [J]. The Cryosphere, 2020, 14(2): 737-750. DOI: 10.5194/tc-14-737-2020
[8] 刘大翔, 程尊兰, 赵鑫, 等. 雪崩防治工程研究与应用现状[J]. 山地学报, 2013, 31(4): 425-433. [LIU Daxiang, CHENG Zunlan, ZHAO Xin, et al. Research and application situation of avalanche prevention and control engineering [J]. Mountain Research, 2013, 31(4): 425-433] DOI: 10.16089/j.cnki.1008-2786.2013.04.008
[9] 胡汝骥, 姜逢清. 中国天山雪崩与治理[M]. 北京: 人民交通出版社, 1990: 84-91. [HU Ruji, JIANG Fengqing. Avalanches and control in Tianshan Mountains of China [M]. Beijing: China Communications Press, 1990: 84-91]
[10] LI Xingyue, SOVILLA B, GRAY J M N T, et al. Transient wave activity in snow avalanches is controlled by entrainment and topography [J]. Communications Earth & Environment, 2024, 5(1): 77. DOI: 10.1038/s43247-023-01157-x
[11] BUTLER D R, SAWYER C F. Dendrogeomorphology and high-magnitude snow avalanches: A review and case study [J]. Natural Hazards and Earth System Sciences, 2008, 8(2): 303-309. DOI: 10.5194/nhess-8-303-2008
[12] GAUME J, VAN HERWIJNEN A, CHAMBON G, et al. Snow fracture in relation to slab avalanche release: Critical state for the onset of crack propagation [J]. The Cryosphere, 2017, 11(1): 217-228. DOI: 10.5194/tc-11-217-2017
[13] 除多. 西藏雪崩灾害及其应对措施研究[J]. 高原山地气象研究, 2022, 42(1): 117-126. [CHU Duo. Study on avalanche hazards and response measures in Tibet area [J]. Plateau and Mountain Meteorology Research, 2022, 42(1): 117-126] DOI: 10.3969/j.issn.1674-2184.2022.01.017
[14] KERN H, ECKERT N, JOMELLI V, et al. Brief communication: Weak control of snow avalanche deposit volumes by avalanche path morphology [J]. The Cryosphere, 2021, 15(10): 4845-4852. DOI: 10.5194/tc-15-4845-2021
[15] FERGUGLIA O, PALAZZI E, ARNONE E. Elevation dependent change in ERA5 precipitation and its extremes [J]. Climate Dynamics, 2024, 62(8): 8137-8153. DOI: 10.1007/s00382-024-07328-6
[16] 董文杰, 韦志刚, 范丽军. 青藏高原东部牧区雪灾的气候特征分析[J]. 高原气象, 2001, 20(4): 402-406. [DONG Wenjie, WEI Zhigang, FAN Lijun. Climatic character analyese of snow disasters in east Qinghai-Xizang Plateau livestock farm [J]. Plateau Meteorology, 2001, 20(4): 402-406] DOI: 10.3321/j.issn:1000-0534.2001.04.009
[17] 周陆生, 李海红, 汪青春. 青藏高原东部牧区大—暴雪过程及雪灾分布的基本特征[J]. 高原气象, 2000, 19(4): 450-458. [ZHOU Lusheng, LI Haihong, WANG Qingchun. The basic characteristics of heavy snowstorm process and snow disaster distribution in eastern pastoral areas of Qinghai-Xizang Plateau [J]. Plateau Meteorology, 2000, 19(4): 450-458] DOI: 10.3321/j.issn:1000-0534.2000.04.006
[18] HAFNER E D, TECHEL F, DAUDT R C, et al. Avalanche size estimation and avalanche outline determination by experts: Reliability and implications for practice [J]. Natural Hazards and Earth System Sciences, 2023, 23(8): 2895-2914. DOI: 10.5194/nhess-23-2895-2023
[19] 熊建国, 李有利, 张培震. 夷平面研究新进展[J]. 地球科学进展, 2020, 35(4): 378-388. [XIONG Jianguo, LI Youli, ZHANG Peizhen. New advances in planation surface research [J]. Advances in Earth Science, 2020, 35(4): 378-388] DOI: 10.11867/j.issn.1001-8166.2020.032
[20] 申艳军, 彭建兵, 陈兴, 等. 高山冰川地貌区垂直分带性与地质灾害空间配置关系[J]. 岩石力学与工程学报, 2023, 42(6): 1336-1351. [SHEN Yanjun, PENG Jianbing, CHEN Xing, et al. Relationship between vertical zonality and spatial allocation of geological hazards in alpine glacial geomorphology [J]. Chinese Journal of Rock Mechanics and Engineering, 2023, 42(6): 1336-1351] DOI: 10.13722/j.cnki.jrme.2022.0864

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11- 08; 改回日期(Accepted date):2024-12-17
基金项目(Foundation item): 西藏自治区科技计划(XZ202402ZD0001); 国家自然科学基金(42361144880); 国家重点研发计划课题(2023YFC3008301)。 [Science and Technology Projects of Xizang Autonomous Region, China(XZ202402ZD0001); National Natural Science Foundation of China(42361144880); National Key Research and Development Program of China(2023YFC3008301)]
作者简介(Biography): 丁海涛(1977-),男,高级工程师,主要研究方向:山地灾害。[DING Haitao(1977-), male, senior engineer, research on mountain disaster] E-mail: dinghaitao@imde.ac.cn
*通讯作者(Corresponding author): 陈宁生(1965-),男,博士,教授,主要研究方向:山地灾害形成机理与防治。[CHEN Ningsheng(1965-), male, Ph.D., professor, research on mountain disaster formation mechanism and prevention] E-mail: chennsh@yangtzeu.edu.ac; chennsh@imde.ac.cn
更新日期/Last Update: 2024-11-30