[1]王翠芳,杨向阳*,熊 璨,等.构造-地貌耦合视角下川东分水岭迁移动力学机制——以磨刀溪-龙河流域为例[J].山地学报,2025,(1):13-27.[doi:10.16089/j.cnki.1008-2786.000873]
 WANG Cuifang,YANG Xiangyang*,XIONG Can,et al.Dynamics of Watershed Migration in Eastern Sichuan from a Tectonic-Geomorphic Coupling Perspective: A Case Study of the Modaoxi-Longhe River Basin, China[J].Mountain Research,2025,(1):13-27.[doi:10.16089/j.cnki.1008-2786.000873]
点击复制

构造-地貌耦合视角下川东分水岭迁移动力学机制——以磨刀溪-龙河流域为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
13-27
栏目:
山地环境
出版日期:
2025-02-20

文章信息/Info

Title:
Dynamics of Watershed Migration in Eastern Sichuan from a Tectonic-Geomorphic Coupling Perspective: A Case Study of the Modaoxi-Longhe River Basin, China
文章编号:
1008-2786-(20251-013-15)
作者:
王翠芳1杨向阳1*熊 璨2肖 明2黄昊源3
(1. 重庆交通大学 河海学院,重庆400074; 2.重庆市地质灾害防治工程勘查设计院,重庆 400700; 3.云阳县林业局 云阳县地质公园管理事务中心,重庆 404500)
Author(s):
WANG Cuifang1 YANG Xiangyang1* XIONG Can2 XIAO Ming2 HUANG Haoyuan3
(1. Hehai College, Chongqing Jiaotong University, Chongqing 40074, China; 2. Chongqing Geological Disaster Prevention Engineering Exploration and Design Institute, Chongqing 400700, China; 3. Yunyang Geopark Management Affairs Center, Yunyang County Forestry Bureau, Chongqing 404512, China)
关键词:
川东褶皱带 齐岳山背斜 分水岭迁移 地貌参数 青藏高原隆升
Keywords:
eastern Sichuan folding belt Qiyueshan Anticline watershed migration geomorphological parameter uplift of the Qinghai-Tibetan Plateau
分类号:
P641
DOI:
10.16089/j.cnki.1008-2786.000873
文献标志码:
A
摘要:
青藏高原的阶段性隆升及其向东扩展产生的远程构造效应,在川东地区重构独特的河流地貌形态,但区域构造活动特征、河流演化特征及其动力学机制仍不明确。本文以川东地区磨刀溪-龙河流域为研究单元,基于12.5 m分辨率的DEM数据,利用ArcGIS平台,提取研究区内34条子流域的地貌参数指标,定量分析研究区河流地貌演化特征,进而探讨区域构造活动程度。结果表明:(1)面积-高程积分值(HI)龙河流域(HI均值为0.504)大于磨刀溪流域(HI均值为0.441),揭示区域南北处于差异演化阶段,南侧地貌发育正处于壮年期,以快速侵蚀为主;(2)χ值南北空间分异(Δ χ=5.43~12.66),指示区域受差异构造活动影响,北侧磨刀溪流域受构造抬升作用影响更强(较龙河流域快0.037 mm?a-1);(3)河流纵剖面分析表明,川东地区地貌演化处于瞬时状态,自新近纪末期(3.0 Ma~3.4 Ma)以来,隆升幅度1200~1400 m,平均隆升速率为(0.43±0.03)mm?a-1;(4)建立“构造脉冲-河流响应”动力学模型,证实高原扩展前锋通过应力波传播驱动川东地区幕式隆升(3期次),导致河流裂点群阶梯状迁移。全新世(0.73 Ma)以来的下切为400~500 m,平均隆升速率为(0.62±0.07)mm?a-1,川东地区对青藏高原东向隆升扩展响应进一步加强。本研究可以为揭示青藏高原远程隆升扩展机制、厘清构造活动与地貌演化耦合关系提供参考依据。
Abstract:
The phased uplift of the Qinghai-Tibetan Plateau and its eastward expansion exert significant far-field tectonic effects, reshaping unique fluvial landforms in eastern Sichuan, but the characteristics of tectonic activity, river evolution, and underlying dynamic mechanisms in the area remain poorly constrained.
In this study, it took the Modaoxi-Longhe River basin in eastern Sichuan as a representative research case. It used 12.5 m resolution DEM data and the ArcGIS platform to extract geomorphic parameters for 34 sub-basins within the study area. These data -were analyzed quantitatively to investigate the evolution of fluvial landforms in the study area and assess the intensity of regional tectonic activity.
(1) By hypsometric integral(HI)values calculation, it suggested that the Longhe River basin had a higher HI value(mean HI=0.504)than that of the Modaoxi basin(mean HI=0.441), which indicates differential evolution phase between the northern and southern region of the study areas, with the southern area in a mature stage dominated by rapid erosion.
(2) It suggested by spatial χ-value disparities(Δχ=5.43-12.66)there were differential tectonic activities, with stronger uplift in the northern Modaoxi basin(0.037 mm·a-1 faster than in the Longhe Basin).
(3) By longitudinal river profile analysis, it revealed eastern Sichuan was in a phase of transient geomorphic evolution, with a total uplift of 1200–1400 m since the late Neogene(3.0-3.4 Ma)at an average rate of(0.43 ± 0.03)mm·a-1.
(4) Our proposed a “tectonic pulse-fluvial response” dynamic model, which confirmed that stress wave propagation from the plateau's expanding front drove episodic uplift(three phases)in eastern Sichuan, triggering stepped migration of knickpoint clusters. Post-Holocene(0.73 Ma)incision reached 400-500 m, with an average uplift rate of(0.62 ± 0.07)mm·a-1, indicating enhanced regional response to the Qinghai-Tibetan Plateau's eastward expansion.
This study provides insights into the mechanisms of far-field plateau uplift and the coupling between tectonic activity and landscape evolution.

参考文献/References:

[1] ANTÓN L, DE VICENTE G, MUÑOZ-MARTÍN A, et al. Using river long profiles and geomorphic indices to evaluate the geomorphological signature of continental scale drainage capture, Duero basin(NW Iberia)[J]. Geomorphology, 2014, 206: 250-261. DOI: 10.1016/j.geomorph.2013.09.028
[2] 张天琪, 王振, 张晓明, 等. 北天山乌鲁木齐河流域面积-高程积分及其地貌意义[J]. 第四纪研究, 2015, 35(1): 60-70. [ZHANG Tianqi, WANG Zhen, ZHANG Xiaoming, et al. Hypsometric integral analysis of the Ürümqi River drainage basin and its implications for topographic evolution [J]. Quaternary Sciences, 2015, 35(1): 60-70] DOI: 10.11928/j.issn.1001-7410.2015.01.06
[3] 王岩, 刘少峰, 高明星, 等. 洮河水系流域地貌特征及其构造指示意义[J]. 地学前缘, 2010, 17(4): 43-49. [WANG Yan, LIU Shaofeng, GAO Mingxing, et al. Geomorphology of the Taohe River drainage system and its structural implications [J]. Earth Science Frontiers, 2010, 17(4): 43-49]
[4] 陈浩, 董廷旭, 李勇, 等. 涪江上游流域地貌特征及其对断裂活动性的响应[J]. 山地学报, 2020, 38(4): 542-551. [CHEN Hao, DONG Tingxu, LI Yong, et al. Geomorphological characteristics and its response to fault activity in the upper reaches of the Fujiang drainge basin, China [J]. Mountain Research, 2020, 38(4): 542-551] DOI: 10.16089/j.cnki.1008-2786.000532
[5] 谢小平, 白毛伟, 陈芝聪, 等. 龙门山北东段山前断裂第四纪构造活动性与构造地貌特征[J]. 第四纪研究, 2018, 38(1): 247-260. [XIE Xiaoping, BAI Maowei, CHEN Zhicong, et al. Quaternary tectonic activity and tectono-geomorphic in the northeastern Longmen Mountains foreland faults zone [J]. Quaternary Sciences, 2018, 38(1): 247-260] DOI: 10.11928/j.issn.1001-7410.2018.01.20
[6] 王一舟, 张会平, 郑德文, 等. 基岩河道河流水力侵蚀模型及其应用: 兼论青藏高原基岩河道研究的迫切性[J]. 第四纪研究, 2016, 36(4): 884-897. [WANG Yizhou, ZHANG Huiping, ZHENG Dewen, et al. Stream-power incision model and its implications: Discussion on the urgency of studying bedrock channel across the Tibetan Plateau [J]. Quaternary Sciences, 2016, 36(4): 884-897] DOI: 10.11928/j.issn.1001-7410.2016.04.09
[7] WANG Xianyan, VANDENBERGHE J, LU Huayu, et al. Climatic and tectonic controls on the fluvial morphology of the northeastern Tibetan Plateau(China)[J]. Journal of Geographical Sciences, 2017, 27: 1325-1340. DOI: 10.1007/s1442-017-1438-9
[8] DAVIS W M. The geographical cycle [J]. The Geographical Journal, 1899, 14(5): 481-504. DOI: 10.2307/1774538
[9] ZHANG Huiping, ZHANG Peizhen, KIRBY E, et al. Along-strike topographic variation of the Longmen Shan and its significance for landscape evolution along the eastern Tibetan Plateau [J]. Journal of Asian Earth Sciences, 2011, 40: 855-864. DOI: 10.1016/j.jseaes.2010.05.015
[10] 吴雯雯, 张文翔, 明庆忠, 等. 基于DEM的长江第一弯地区地貌因子特征[J]. 山地学报, 2014, 32(2): 219-225. [WU Wenwen, ZHANG Wenxiang, MING Qingzhong, et al. The physiognomy morphological characters and the origin of the area in the first turn of Yangtze River based on DEM [J]. Mountain Research, 2014, 32(2): 219-225] DOI: 10.16089/j.cnki.1008-2786.2014.02.003
[11] YIN An, HARRISON T M. Geologic evolution of the Himalayan-Tibetan orogen [J]. Annual Review of Earth and Planetary Sciences, 2003, 28: 211-280. DOI: 10.1146/annurev.earth.28.1.211
[12] 许志琴, 杨经绥, 李海兵, 等. 印度—亚洲碰撞大地构造[J]. 地质学报, 2011, 85(1): 1-33. [XU Zhiqin, YANG Jingsui, LI Haibing, et al. On the tectonics of the India-Asia collision [J]. Acta Geologica Sinica, 2011, 85(1): 1-33] DOI: 10.19762/j.cnki.dizhixuebao.2011.01.001
[13] 张培震, 王伟涛, 甘卫军, 等. 青藏高原的现今构造变形与地球动力过程[J]. 地质学报, 2022, 96(10): 3297-3313. [ZHANG Peizhen, WANG Weitao, GAN Weijun, et al. Present-day deformation and geodynamic processes of the Tibetan Plateau [J]. Acta Geologica Sinica, 2022, 96(10): 3297-3313] DOI: 10.3969/j.issn.0001-5717.2022.10.003
[14] 张信宝, 刘维明, 陈宁生, 等. 青藏高原面地貌稳定态与高原隆升时间[J]. 山地学报, 2023, 41(4): 459-468. [ZHANG Xinbao, LIU Weiming, CHEN Ningsheng, et al. Geomorphological steady state of the Tibet Plateau and its uplift time [J]. Mountain Research, 2023, 41(4): 459-468] DOI: 10.16089/j.cnki.1008-2786.000762
[15] 张信宝, 刘彧, 胡凯衡, 等. 金沙江折向东流的地质背景、古堰塞湖沉积、第四纪河流演化[J]. 山地学报, 2020, 38(6): 805-815. [ZHANG Xinbao, LIU Yu, HU Kaiheng, et al. Geological implication of the Jinsha River flowing eastward, ancient dammed lake deposition, and Quaternary river evolution in China [J]. Mountain Research, 2020, 38(6): 805-815] DOI: 10.16089/j.cnki.1008-2786.000557
[16] ENGLAND P, MOLNAR P. Surface uplift, uplift of rocks, and exhumation of rocks [J]. Geology, 1990, 18(12): 1173-1177. DOI: 10.1130/0091-7613(1990)018<1173:SUUORA>2.3.CO; 2
[17] WANG E, KIRBY E, FURLONG K P, et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic [J]. Nature Geoscience, 2013, 5(9): 640-645. DOI: 10.1038/ngeo1538
[18] 徐汀滢, 季建清, 涂继耀, 等. 川东褶皱带构造发育深度层次与变形样式[J]. 地质科学, 2012, 47(3): 788-807. [XU Tingying, JI Jianqing, TU Jiyao, et al. Tectonic levels and deformation patterns of the eastern Sichuan fold belt [J]. Chinese Journal of Geology, 2012, 47(3): 788-807] DOI: 10.3969/j.issn.0563-5020.2012.03.016
[19] 唐永, 梅廉夫, 肖安成, 等. 川东北宣汉—达县地区晚中生代—新生代构造应力场转化及其油气意义[J]. 石油学报, 2013, 34(1): 59-70. [TANG Yong, MEI Lianfu, XIAO Ancheng, et al. Transition of tectonic stress field and hydrocarbon significance of the Late Mesozoic-Cenozoic in Xuanhan-Daxian region, northeastern Sichuan Basin [J]. Act Petrolei Sinica, 2013, 34(1): 59-70] DOI: 10.7623/syxb201301007
[20] 颜丹平, 汪新文, 刘友元. 川鄂湘边区褶皱构造样式及其成因机制分析[J]. 现代地质, 2000, 14(1): 37-43. [YAN Danping, WANG Xinwen, LIU Youyuan. Analysis of fold style and its formation mechanism in the area of boundary among Sichuan, Hubei and Hunan [J]. Geoscience, 2000, 14(1): 37-43] DOI: 10.1007/s11769-000-0051-4
[21] 魏峰, 陈孔全, 庹秀松. 川东齐岳山断层北部差异构造变形特征[J]. 石油实验地质, 2019, 41(3): 348-354+362. [WEI Feng, CHEN Kongquan, TUO Xiusong. Differential tectonic deformation in the northern Qiyueshan Fault, eastern Sichuan Basin [J]. Petroleum Geology & Experiment, 2019, 41(3): 348-354+362] DOI: 10.11781/sysydz201903348
[22] ZHAO Yang, RATSCHBACHER L, JONCKHEERE R, et al. Late-stage foreland growth of China's largest orogens(Qinling, Tibet): Evidence from the Hannan-Micang crystalline massifs and the northern Sichuan Basin, central China [J]. Lithosphere, 2013, 5(4): 420-437. DOI: 10.1130/L260.1
[23] 张国伟, 郭安林, 王岳军, 等. 中国华南大陆构造与问题[J]. 中国科学: 地球科学, 2013, 43(10): 1553-1582. [ZHANG Guowei, GUO Anlin, WANG Yuejun, et al. Tectonics of south China continent and its implications [J]. Science China: Earth Sciences, 2013, 56: 1804-1828] DOI: 10.1007/s11430-013-4679-1
[24] YAN Danping, ZHANG Bing, ZHOU Meifu, et al. Constraints on the depth, geometry and kinematics of blind detachment faults provided by fault-propagation folds: An example from the Mesozoic fold belt of south China [J]. Journal of Structural Geology, 2009, 31(2): 150-162. DOI: 10.1016/j.jsg.2008.11.005
[25] SHU Liangshu, FAURE M, WANG Bo, et al. Late Palaeozoic-Early Mesozoic geological features of south China: Response to the Indosinian collision events in southeast Asia [J]. Comptes Rendus Geoscience, 2008, 340(2-3): 151-165. DOI: 10.1016/j.crte.2007.10.010
[26] 徐先兵, 张岳桥, 贾东, 等. 华南早中生代大地构造过程[J]. 中国地质, 2009, 26(3): 573-593. [XU Xianbing, ZHANG Yueqiao, JIA Dong, et al. Early Mesozoic geotectonic processes in south China [J]. Geology in China, 2009, 26(3): 573-593] DOI: 10.3969/j.issn.1000-3657.2009.03.007
[27] MENG Qingren, WANG Erchie, HU Jianmin. Mesozoic sedimentary evolution of the northwest Sichuan basin: Implication for continued clockwise rotation of the south China block [J]. Geological Society of America Bulletin, 2005, 117(3-4): 396-410. DOI: 10.1130/B25407.1
[28] 舒良树. 陆内造山带特征及其动力学讨论[J]. 地质学报, 2021, 95(1): 98-106. [SHU Liangshu. Principal features of intracontinental orogenic belt and discussions on its dynamics [J]. Acta Geologica Sinica, 2021, 95(1): 98-106] DOI: 10.19762/j.cnki.dizhixuebao.2020287
[29] 李建华, 董树文, 赵国春, 等. 华南晚中生代大陆变形、深部过程及动力学[J]. 地质学报, 2024, 98(3): 829-861. [LI Jianhua, DONG Shuwen, ZHAO Guochun, et al. Late Mesozoic continental deformation, deep processes, and geodynamic evolution of south China [J]. Acta Geologica Sinic, 2024, 98(3): 829-861] DOI: 10.19762/j.cnki.dizhixuebao.2024005
[30] 许效松, 刘宝珺, 赵玉光. 上扬子台地西缘二叠系—三叠系层序界面成因分析与盆山转换[J]. 特提斯地质, 1996, 20: 1-30. [XU Xiaosong, LIU Baojun, ZHAO Yuguang. Sequence boundary genesis and basin-mountain transformation on the western margin of the upper Yangtze platform during the Permian to Triassic [J]. Tethyan Geology, 1996, 20: 1-30]
[31] WANG Yuejun, ZHANG Yuzhi, FAN Weiming, et al. Early Neoproterozoic accretionary assemblage in the Cathaysia Block: Geochronological, Lu-Hf isotopic and geochemical evidence from granitoid gneisses [J]. Precambrian Research, 2014, 249: 144-161. DOI: 10.1016/j.precamres.2014.05.003
[32] YU Jinhai, WANG Lijuan, O'REILLY S Y, et al. A Paleoproterozoic orogeny recorded in a long-lived cratonic remnant(Wuyishan terrane), eastern Cathaysia Block, China [J]. Precambrian Research, 2009, 174(3-4): 347-363. DOI: 10.1016/j.precamres.2009.08.009
[33] 张岳桥, 董树文, 李建华, 等. 中生代多向挤压构造作用与四川盆地的形成和改造[J]. 中国地质, 2011, 38(2): 233-250. [ZHANG Yueqiao, DONG Shuwen, LI Jianhua, et al. Mesozoic multi-directional compressional tectonics and formation-reformation of Sichuan basin [J]. Geology China, 2011, 38(2): 233-250] DOI: 10.3969/j.issn.1000-3657.2011.02.001
[34] MAO Jingwen, CHENG Yanbo, CHEN Maohong, et al. Major types and time-space distribution of Mesozoic ore deposits in south China and their geodynamic settings [J]. Miner Deposita, 2013, 48(3): 267-294. DOI: 10.1007/s00126-012-0446-z
[35] 邓宾, 刘树根, 王国芝, 等. 四川盆地南部地区新生代隆升剥露研究—低温热年代学证据[J]. 地球物理学报, 2013, 56(6): 1958-1973. [DENG Bing, LIU Shugen, WANG Guozhi, et al. Cenozoic uplift and exhumation in southern Sichuan Basin: Evidence from low-temperature thermochronology [J]. Chinese Journal of Geophysics, 2013, 56(6): 1958-1973] DOI: 10.6038/cjg20130618
[36] 邹玉涛, 段金宝, 赵艳军, 等. 川东高陡断褶带构造特征及其演化[J]. 地质学报, 2015, 89(11): 2046-2052. [ZOU Yutao, DUAN Jinbao, ZHAO Yanjun, et al. Tectonic characteristics and evolution of the high and steep fault folding belt in east Sichuan [J]. Acta Geologica Sinica, 2015, 89(11): 2046-2052] DOI: 10.19762/j.cnki.dizhixuebao.2015.11.015.
[37] 张旭亮. 鄂西—渝东地区构造演化及成因机制[D]. 北京: 中国地质大学, 2019: 1-173. [ZHANG Xuliang. Tectonic evolution and genetic mechanism of western Hubei and eastern Chongqing area [D]. Beijing: China University of Geosciences, 2019: 1-173]
[38] 王二七, 尹纪云. 川西南新生代构造作用以及四川原型盆地的破坏[J]. 西北大学学报(自然科学版), 2009, 39(3): 359-367. [WANG Erqi, YIN Jiyun. Cenozoic multi-stage deformation occurred in southwest Sichuan: Cause for the dismemberment of the proto-Sichuan Basin [J]. Journal of Northwest University(Natural Science Edition), 2009, 39(3): 359-367] DOI: 10.16152/j.cnki.xdxbzr.2009.03.018
[39] PERRON J T, ROYDEN L. An integral approach to bedrock river profile analysis [J]. Earth Surface Processes and Landforms, 2012, 38(6): 570-576. DOI: 10.1002/esp.3302
[40] 王一舟, 郑德文, 张会平. 河流高程剖面分析的方法与程序实现—基于Matlab平台编写的开源函数集RiverProAnalysis[J]. 中国科学: 地球科学, 2022, 52(10): 2039-2060. [WANG Yizhou, ZHENG Dewen, ZHANG Huiping. The methods and program implementation for river longitudinal profile analysis—RiverProAnalysis, a set of open-source functions based on the Matlab platform [J]. Science China Earth Sciences, 2022, 65(9): 1788-1809] DOI: 10.1007/s11430-021-9938-x
[41] FORTE A M, WHIPPLE K X. Criteria and tools for determining drainage divide stability [J]. Earth and Planetary Science Letters, 2018, 493: 102-117. DOI: 10.1016/j.epsl.2018.04.026
[42] WILLETT S D, MCCOY S W, PERRON J T, et al. Dynamic reorganization of river basins [J]. Science, 2014, 343(6175): 1248765. DOI: 10.1126/science.1248765
[43] WHIPPLE K X, FORTE A M, DIBIASE R A, et al. Timescales of landscape response to divide migration and drainage capture: Implications for the role of divide mobility in landscape evolution [J]. Journal of Geophysical Research: Earth Surface, 2017, 122(1): 248-273. DOI: 10.1002/2016JF003973
[44] FAN Niannian, KONG Ping, ROBL J C, et al. Timing of river capture in major Yangtze River tributaries: Insights from sediment provenance and morphometric indices [J]. Geomorphology, 2021, 392: 107915. DOI: 10.1016/j.geomorph.2021.107915
[45] STRAHLER A N. Hypsometric(area-altitude)analysis of erosional topography [J]. Bulletin of the Geological Society of America, 1952, 63(11): 1117-1141. DOI: 10.1130/0016-7606(1952)63[1117:HAAOET]2.0.CO; 2
[46] PIKE R J, WILSON S E. Elevation-relief ratio, hypsometric integral, and geomorphic area-altitude analysis [J]. Geological Society of America Bulletin, 1971, 82(4): 1079-1083. DOI: 10.1130/0016-7606(1971)82[1079:erhiag]2.0.co; 2
[47] MUSSELMAN Z A, AGULAR A. Investigation of drainage basin geometry near an anomalously straight reach of the Big Black River, Mississippi, USA [J]. Physical Geography, 2016, 37(2): 169-187. DOI: 10.1080/02723646.2016.1163482
[48] 何成邦, 胡春生, 田景梅, 等. 大别山东南缘河流裂点成因及其地貌演化意义[J]. 山地学报, 2023, 41(3): 322-334. [HE Chengbang, HU Chunsheng, TIAN Jingmei, et al. Origin and geomorphological evolution of river knickpoints in the southeast edge of the Dabie Mountains, China [J]. Mountain Research, 2023, 41(3): 322-334] DOI: 10.16089/j.cnki.1008-2786.000751
[49] 张东越, 董有浦, 焦骞骞, 等. 青藏高原东南缘新生代的三期构造隆升—来自河流纵剖面分析的证据[J]. 大地构造与成矿学, 2023, 47(2): 308-326. [ZHANG Dongyue, DONG Youpu, JIAO Qianqian, et al. Three periods of Cenozoic tectonic uplift in the southeastern margin of the Tibetan Plateau: Evidence from fluvial longitudinal profile analysis [J]. Geotectonica et Metallogenia, 2023, 47(2): 308-326] DOI: 10.16539/j.ddgzyckx.2023.02.006
[50] WILLETT S D. Orogeny and orography: The effects of erosion on the structure of mountain belts [J]. Journal of Geophysical Research Solid Earth, 1999, 104(B12): 28957-28981. DOI: 10.1029/1999jb900248
[51] ZENG Xun, TAN Xibin. Drainage divide migration in response to strike-slip faulting: An example from northern Longmen Shan, eastern Tibet [J]. Tectonophysics, 2023, 848: 229720. DOI: 10.1016/j.tecto.2023.229720
[52] KIRBY E, WHIPPLE K X, TANG Wenqing, et al. Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: Inferences from bedrock channel longitudinal profiles [J]. Journal of Geophysical Research Solid Earth, 2003, 108(B4): 148-227. DOI: 10.1029/2001jb000861
[53] 梅廉夫, 刘昭茜, 汤济广, 等. 湘鄂西-川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据[J]. 地球科学(中国地质大学学报), 2010, 35(2): 161-174. [MEI Lianfu, LIU Zhaoqian, TANG Jiguang, et al. Mesozoic Intra-continental progressive deformation in western Hunan-Hubei-eastern Sichuan provinces of China: Evidence from apatite fission track and balanced cross-section [J]. Earth Science-Journal of China University of Geosciences, 2010, 35(2): 161-174] DOI: 10.3799/dqkx.2010.017
[54] 邓宾, 刘树根, 刘顺, 等. 四川盆地地表剥蚀量恢复及其意义[J]. 成都理工大学学报(自然科学版), 2009, 36(6): 675-686. [DENG Bin, LIU Shugen, LIU Shun, et al. Restoration of exhumation thickness and its significance in Sichuan Basin, China [J]. Journal of Chengdu University of Technology(Science & Technology Edition), 2009, 36(6): 675-686] DOI: 10.3969/j.issn.1671-9727.2009.06.013
[55] LI Jijun, XIE Shiyou, KUANG Mingsheng. Geomorphic evolution of the Yangtze Gorges and the time of their formation [J]. Geomorphology, 2001, 41(2-3): 125-135. DOI: 10.1016/S0169-555X(01)00110-6
[56] YANG Chaoqun, JIAO Ruohong, ZATTIN M, et al. Late Oligocene-Early Miocene incision of the Three Gorges and the initial establishment of an east-flowing Yangtze River [J]. Geomorphology, 2023, 441: 108897. DOI: 10.1016/j.geomorph.2023.108897
[57] 张信宝, 胡凯衡, 刘彧, 等. 古老的长江, 年轻的三峡[J]. 山地学报, 2021, 39(5): 611-620. [ZHANG Xinbao, HU Kaiheng, LIU Yu, et al. The ancient Yangtze River versus the young Three Gorges [J]. Mountain Research, 2021, 39(5): 611-620] DOI: 10.16089/j.cnki.1008-2786.000624
[58] SHI Xiaohui, YANG Zhao, DONG Yunpeng, et al. Geomorphic indices and longitudinal profile of the Daba Shan, northeastern Sichuan Basin: Evidence for the late Cenozoic eastward growth of the Tibetan Plateau [J]. Geomorphology, 2020, 353: 107031. DOI: 10.1016/j.geomorph.2020.107031
[59] 陶帅, 王彬, 李玮, 等. 西秦岭东段对青藏高原东向扩展过程构造响应的古地磁制约[J]. 地球物理学报, 2020, 65(9): 3502-3520. [TAO Shuai, WANG Bin, LI Wei, et al. Paleomagnetic constraints on the tectonic response of the eastern part of the west Qinling to the eastward spreading process of the Tibetan Plateau [J]. Chinese Journal of Geophysics, 2020, 65(9): 3502-3520] DOI: 10.6038/cjg2022P0225
[60] 刘树根, 孙玮, 李智武, 等. 四川盆地晚白垩世以来的构造隆升作用与天然气成藏[J]. 天然气地球科学, 2008, 19(3): 293-300. [LIU Shugen, SUN Wei, LI Zhiwu, et al. Tectonic uplifting and gas pool formation since Late Cretaceous epoch Sichuan Basin [J]. Natural Gas Geoscience, 2008, 19(3): 293-300] DOI: 10.11764/j.issn.1672-1926.200803.293
[61] 叶飞, 舒多友, 潘文, 等. 扬子地台东南缘武陵凹陷区新生代以来的隆升剥蚀过程—来自碎屑岩磷灰石裂变径迹的证据[J]. 地质通报, 2022, 41(12): 2158-2166. [YE Fei, SHU Duoyou, PAN Wen, et al. Uplifting and erosion process of Wuling Concave Field, southeast margin Yangtze Platform since Cenozoic-evidence of fission track of clastic apatite [J]. Geological Bulletin of China, 2022, 41(12): 2158-2166] DOI: 10.12097/j.issn.1671-2552.2022.12.008
[62] 庹秀松, 陈孔全, 罗顺社, 等. 四川盆地东南缘齐岳山断裂构造特征与页岩气保存条件[J]. 石油与天然气地质, 2020, 41(5): 1017-1027. [TUO Xiusong, CHEN Kongquan, LUO Shunshe, et al. Structural characteristics of Qiyueshan Fault and shale gas preservation at the southeastern margin of Sichuan Basin [J]. Oil & Gas Geology, 2020, 41(5): 1017-1027] DOI: 10.11743/ogg20200512
[63] WANG Yadong, YUAN Sihua, SONG Chunhui, et al. Jianchuan Basin Uplift and Paleo-upper Yangtze River diversion during the latest Eocene: Evidence from synsedimentary structure and apatite fission track thermochronology [J]. Geomorphology, 2024, 463: 109375. DOI: 10.1016/j.geomorph.2024.109375

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11-13; 改回日期(Accepted date):2025- 02-10
基金项目(Foundation item): 川渝共建古生物与古环境协同演化重庆市重点实验室开放课题(CYPL2022KF001); 国家自然科学基金青年基金(42102279); 重庆市规划和自然资源局科技项目(20C00346)。[Open Project of the Chongqing Key Laboratory for Collaborative Evolution of Paleobiology and Paleoenvironment, co-built by Sichuan and Chongqing(CYPL2022KF001); Youth Program of National Natural Science Foundation of China(42102279); Science and Technology Project of Chongqing Municipal Planning and Natural Resources Bureau(20C00346)]
作者简介(Biography): 王翠芳(1999-),女,硕士研究生,四川达州人,主要研究方向:构造地貌与第四纪环境。[WANG Cuifang(1999-), female, born in Dazhou, Sichuan Province, M.Sc. candidate, research on tectonic geomorphology and quaternary environment] E-mail: wangcfcqjtu@163.com
*通讯作者(Corresponding author): 杨向阳(1988-),男,博士,副教授,主要研究方向:构造地质学。[YANG Xiangyang(1988-), male, Ph.D., associate professor, specialized in structuralgeology] E-mail: yangxy@cqjtu.edu.cn
更新日期/Last Update: 2025-01-30