[1]徐文君,马 超*,吕立群,等.西藏热玛沟流域冰川型泥石流历史的树木年代学重建[J].山地学报,2025,(1):122-131.[doi:10.16089/j.cnki.1008-2786.000880]
 XU Wenjun,MA Chao*,LYU Liqun,et al.Dendrochronological Interpretation of Glacial Debris Flow History in the Rema Gully, Xizang, China[J].Mountain Research,2025,(1):122-131.[doi:10.16089/j.cnki.1008-2786.000880]
点击复制

西藏热玛沟流域冰川型泥石流历史的树木年代学重建()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
122-131
栏目:
山地灾害
出版日期:
2025-02-20

文章信息/Info

Title:
Dendrochronological Interpretation of Glacial Debris Flow History in the Rema Gully, Xizang, China
文章编号:
1008-2786-(20251-122-10)
作者:
徐文君1马 超1*吕立群1杜 翠2
(1.北京林业大学 水土保持学院,北京 100083; 2. 成都信息工程大学 软件工程学院,成都 610225)
Author(s):
XU Wenjun1 MA Chao1* LYU Liqun1 DU Cui2
(1. School of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; 2 School of Software Engineering, Chengdu University of Information Technology, Chengdu 610225, China)
关键词:
树木年代学 冰川型泥石流 生长释放/抑制 灾害重建 热玛沟
Keywords:
dendrochronology glacial debris flow growth release/suppression geo-disaster reconstruction the Rema gully
分类号:
P642; X43
DOI:
10.16089/j.cnki.1008-2786.000880
文献标志码:
A
摘要:
树木年代学方法因其强连续性和高分辨率特性,广泛应用于泥石流灾害历史重建。然而,传统树木年代学方法在对特定区域树种及其生境特征进行参数化处理时存在不足,基于生长释放/抑制机制的年轮分析方法在不同区域的适用性受到限制。喜马拉雅山脉中段地区是冰川泥石流多发区。该区域尚未开展基于树木年代学方法的泥石流重建灾害历史研究。本文以喜马拉雅山脉中段吉隆藏布江流域热玛沟为研究对象,通过解剖学分析47棵树平均树龄(82 a±24 a)的创伤特征(树脂道密度≥12 个/cm2),结合重建泥石流暴发时间的精确度(R=0.8)动态优化生长扰动阈值; 分析树木年轮因泥石流干扰产生的伤疤、愈伤组织及生长释放/抑制等特征,结合区域树木生长特征,优化了树木年轮生长释放/抑制的阈值和Wit指数(加权响应指数)的计算方法,重建研究区的泥石流灾害历史; 结合遥感影像解译数据,验证其适用性。结果表明:(1)热玛沟流域树木年轮弱生长释放/抑制阈值修正为25%(原标准40%),强生长释放/抑制阈值修正为54%(原标准60%),事件识别准确率提升至87.6%(p<0.01)。通过1988—2022年的遥感影像解译,成功识别出10场泥石流事件(1991年、1995年、1999年、2002年、2006年、2010年、2014年、2015年、2016年、2017年),其时空分布特征与实地调查匹配度达91.4%。这证明了新的生长释放/抑制阈值和Wit指数计算方法在精准定灾方面的有效性。(2)首次重建出1943年和1968年两次历史强泥石流事件,将热玛沟流域灾害序列回溯期扩展至75 a。(3)传统阈值标准会造成约40%的泥石流事件漏判,改进后的双阈值体系显著提升灾害识别精度(Kappa系数0.82),这为冰川活跃区的泥石流灾害研究提供了新的视角和方法论支持。本研究建立的树木年代学新方法为冰川活跃区泥石流灾害的精准识别提供了新的技术手段,对完善喜马拉雅地区灾害数据库具有重要参考价值。
Abstract:
Dendrochronology, with its exceptional time-continuity and high-resolution characteristics, has been widely applied in reconstructing geo-disaster histories. However, dendrochronology method has insufficiency in parameterizing the characteristics of trees and their habitats in a specific area, which limits the applicability of region-specific tree-ring analysis based on growth release/suppression mechanisms. The mid-Himalayas, a glaciated debris flow-prone area, it lacked of studies on debris flow reconstruction using dendrochronology.
In this paper, it took the Rema Gully in the Gyirong Tsangpo River basin of the mid-Himalayas as the study area. Through anatomical analysis of trauma features(resin duct density ≥12 per cm2)in 47 trees(mean age 82±24 years)and dynamic optimization of growth disturbance thresholds using the precision of reconstructed debris flow occurrence times(R=0.8), it developed an enhanced methodology for determining growth release/suppression thresholds and calculating the Disaster Disturbance Index(Wit). This approach integrated tree scars, callus tissues, and growth responses induced by debris flow disturbances with regional tree growth patterns to reconstruct the Gully's debris flow history, validated through remote sensing interpretation.
(1)The optimized thresholds significantly improved event identification accuracy to 87.6%(p<0.01), with weak growth release/suppression threshold adjusted to 25%(original 40%)and strong threshold to 54%(original 60%). Remote sensing validation(1988-2022)confirmed 10 debris flow events(1991, 1995, 1999, 2002, 2006, 2010, 2014, 2015, 2016, 2017)showing 91.4% spatiotemporal consistency with field surveys, demonstrating the method's effectiveness.
(2)Two previously undocumented major historical events in 1943 and 1968 were reconstructed, extending the disaster chronology to 75 years.
(3)Traditional thresholds underestimated approximately 40% of events, while the improved dual-threshold(weak/strong)system achieved significantly higher identification accuracy(Kappa coefficient=0.82), providing novel methodological insights for glacial debris flow research.
The developed dendrochronological approach offers a robust technical framework for precise identification of debris flows in glacierized regions, contributing substantially to improving disaster databases in the Himalayas.

参考文献/References:

[1] STOFFEL M, BOLLSCHWEILER M. What tree rings can tell about earth-surface processes: Teaching the principles of dendrogeomorphology [J]. Geography Compass, 2009, 3(3): 1013-1037. DOI: 10.1111/j.1749-8198.2009.00223.x
[2] STRUNK H. Dating of geomorphological processes using dendrogeomorphological methods [J]. Catena, 1997, 31(2): 137-151. DOI: 10.1016/S0341-8162(97)00031-3
[3] 丁苗, 白世彪, 王建, 等. 利用树木年轮重建滑坡复活时间的方法[J]. 山地学报, 2016, 34(5): 545-554. [DING Miao, BAI Shibiao, WANG Jian, et al. Basic procedures of using tree rings to reconstruct the time of landslide reactivation [J]. Mountain Research, 2016, 34(5): 545-554] DOI: 10.16089/j.cnki.1008-2786.000161
[4] 赖忠平, 杨安娜, 丛禄, 等. 山地灾害沉积物的测年综述[J]. 地学前缘, 2021, 28(2): 1-18. [LAI Zhongping, YANG Anna, CONG Lu, et al. A review on the dating techniques for mountain hazards-induced sediments [J]. Earth Science Frontiers, 2021, 28(2): 1-18] DOI: 10.13745/j.esf.sf.2020.9.7
[5] STOFFEL M. Magnitude-frequency relationships of debris flows—a case study based on field surveys and tree-ring records [J]. Geomorphology, 2010, 116(2): 67-76. DOI: 10.13745/j.esf.sf.2020.9.7
[6] BOLLSCHWEILER M, STOFFEL M. Changes and trends in debris-flow frequency since AD 1850: Results from the Swiss Alps [J]. The Holocene, 2010, 20(6): 907-916. DOI: 10.1177/0959683610365942
[7] BOLLSCHWEILER M, STOFFEL M, EHMISH M, et al. Reconstructing spatio-temporal patterns of debris-flow activity using dendrogeomorphological methods [J]. Geomorphology, 2007, 87(4): 337-351. DOI: 10.1016/j.geomorph.2006.10.002
[8] 铁永波, MALIK I, OWCZAREK P. 树木年代学在高寒山区泥石流历史事件重建中的应用—以磨西河流域倒灶沟为例[J]. 山地学报, 2014, 32(2): 226-232. [TIE Yongbo, MALIK I, OWCZAREK P. Dendrochronological dating of debris flow historical events in high mountain area [J]. Mountain Research, 2014, 32(2): 226-232] DOI: 10.3969/j.issn.1008-2786.2014.02.013
[9] 吴佳亮, 马超, 王锐, 等. 基于树木地貌法重建山洪泥石流历史事件——以北京密云区龙潭沟流域为例[J]. 自然灾害学报, 2021, 30(1): 183-190. [WU Jialiang, MA Chao, WANG Rui, et al. Reconstruction of torrent and debris flow events based on dendrogeomorphology: A case study of Longtangou basin in Miyun District, Beijing [J]. Journal of Natural Disasters, 2021, 30(1): 183- 190] DOI: 10.13577/j.jnd.2021.0119
[10] 王志兰, 马超, 吴佳亮, 等. 基于树木年轮重建密云小西天流域泥石流事件[J]. 自然灾害学报, 2022, 31(5): 183-192. [WANG Zhilan, MA Chao, WU Jialiang, et al. Debris flow event in Xiaoxitian watershed of Miyun based on tree ring reconstruction [J]. Journal of Natural Disasters, 2022, 31(5): 183-192] DOI: 10.13577/j.jnd.2022.0521
[11] QIE Jiazhi, ZHANG Yong, TRAPPMANN D, et al. Long-term reconstruction of flash floods in the Qilian Mountains, China, based on dendrogeomorphic methods [J]. Journal of Mountain Science, 2022, 19(11): 3163-3177. DOI: 10.1007/s11629-022-7577-1
[12] KOGELNIG-MAYER B, STOFFEL M, SCHNEUWLY-BOLLSCHWEILER M, et al. Possibilities and limitations of dendrogeomorphic time-series reconstructions on sites influenced by debris flows and frequent snow avalanche activity [J]. Arctic, Antarctic, and Alpine Research, 2011, 43(4): 649-658. DOI: 10.1657/1938-4246-43.4.649
[13] 孟哲, 吕立群, 余国安, 等. 基于树木年代学的冰川型泥石流灾害历史重建方法——以西藏天摩沟为例[J]. 科学技术与工程, 2022, 22(32): 14124-14136. [MENG Zhe, LYU Liqun, YU Guoan, et al. Reconstruction of glacial debris flow disaster based on dendrochronology: A case study on Tianmo Gully, Tibet [J]. Science Technology and Engineering, 2022, 22(32): 14124-14136] DOI: 10.3969/j.issn.1671-1815.2022.32.007
[14] 吕立群, 王兆印, 孟哲. 基于树木年代学的迫龙沟泥石流灾害历史重建[J]. 地球科学, 2024, 49(1): 335-346. [LYU Liqun, WANG Zhaoyin, MENG Zhe. Reconstruction of debris flow disasters in Polong gully based on dendrochronology [J]. Earth Science, 2024, 49(1): 335-346] DOI: 10.3799/dqkx.2022.142
[15] 皋子琪, 吕立群, 周冠宇, 等. 基于Wit指数的冰川型泥石流的年轮定灾方法[J]. 地球科学, 2025, 50(2): 752-762. [GAO Ziqi, LYU Liqun, ZHOU Guanyu, et al. New reconstruction of glacier debris flows based on tree ring response [J]. Earth Science, 2025, 50(2): 752-762] DOI: 10.3799/dqkx.2024.011
[16] JIANG Sheng, NIE Yong, LIU Qiao, et al. Glacier change, supraglacial debris expansion and glacial lake evolution in the Gyirong River Basin, Central Himalayas, between 1988 and 2015 [J]. Remote Sensing, 2018, 10(7): 986-998. DOI: 10.3390/rs10070986
[17] COLLINS B D, JIBSON R W. Assessment of existing and potential landslide hazards resulting from the April 25, 2015 Gorkha, Nepal earthquake sequence [J]. Geological Survey Open-File Report, 2015, 8(12): 34-49. DOI: 10.3133/ofr20151142
[18] BURNS P, NOLIN A. Using atmospherically-corrected Landsat imagery to measure glacier area change in the Cordillera Blanca, Peru from 1987 to 2010 [J]. Remote Sensing Environment, 2014, 140(1): 165-178. DOI: 10.1016/j.rse.2013.08.026
[19] BLASCHKE T, HAY G J. Object-oriented image analysis and scale-space: Theory and methods for modeling and evaluating multiscale landscape structure [J]. International Archives of Photogrammetry and Remote Sensing, 2001, 34(4): 22-29. DOI: publication/216266277
[20] GRISSINO-MAYER H D. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA [J]. Tree-Ring Research, 2001, 57(2): 205-221. DOI: 10150/251654
[21] FRIEDMAN J M, VINCENT K R, SHAFROTH P B, et al. Dating floodplain sediments using tree-ring response to burial [J]. Earth Surface Process and Landforms, 2005, 30(9): 1077-1091. DOI: 10.1002/esp.1263
[22] STOFFEL M, BOLLSCHWEILER M, HASSLER G R. Differentiating past events on a cone influenced by debris flow and snow avalanche activity: A dendrogeomorphological approach [J]. Earth Surface Processes and Landforms, 2006, 31(11): 1424-1437. DOI: 10.1002/esp.1363
[23] STOFFEL M, BOLLSCHWEILER M. Tree-ring analysis in natural hazards research—an overview [J]. Natural Hazards and Earth System Sciences, 2008, 8(2): 187-202. DOI: 10.5194/nhess-8-187-2008
[24] SHRODER J F. Dendrogeomorphological analysis of mass movement on Table Cliffs Plateau, Utah [J]. Quaternary Research, 1978, 9(2): 168-185. DOI: 10.1016/0033-5894(78)90065-0
[25] ZHANG Yong, STOFFEL M, LIANG E Y, et al. Centennial-scale process activity in a complex landslide body in the Qilian Mountains, northeast Tibetan Plateau, China [J]. Catena, 2019, 179(12): 29-38. DOI: j.catena.2019.03.036
[26] SILHAN K, PANEK T, HRADECKY J, et al. Tree-age control on reconstructed debris-flow frequencies: Examples from a regional dendrogeomorphic reconstruction in the Crimean Mountains [J]. Earth Surface Process and Landforms, 2015, 40(1): 243-251. DOI: 10.1002/esp.3623

相似文献/References:

[1]铁永波,Ireneusz Malik,Piotr Owczarek,等.树木年代学在高寒山区泥石流历史事件重建中的应用——以磨西河流域倒灶沟为例[J].山地学报,2014,(02):226.
 TIE Yongbo,Ireneusz Malik,Piotr Owczarek.Dendrochronological Dating of Debris Flow Historical Events in High Mountain Area——Take Daozao Debris Flow as an Example[J].Mountain Research,2014,(1):226.

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11-14; 改回日期(Accepted date):2025- 01-27
基金项目(Foundation item): 第二次青藏高原综合科学考察(2019QZKK0902)。[The Second Comprehensive Scientific Investigation on the Qinghai-Tibet Plateau(2019QZKK0902)]
作者简介(Biography): 徐文君(1999-),女,青海西宁人,硕士研究生,主要研究方向:山地灾害历史重建。[XU Wenjun(1999-), female, born in Xining, Qinghai Province, M.Sc. candidate, research on reconstruction of mountain disaster history] E-mail: zw1361743992@bjfu.edu.cn
*通讯作者(Corresponding author): 马超(1986-),男,博士,教授,主要研究方向:山地灾害成灾动力学。[MA Chao(1986-), male, Ph.D., professor, research on the dynamics of mountain disaster occurrence] E-mail: sanguoxumei@163.com
更新日期/Last Update: 2025-01-30