参考文献/References:
[1] SCHNEIDER D, HUGGEL C, HAEBERLI W, et al. Unraveling driving factors for large rock-ice avalanche mobility [J]. Earth Surface Processes and Landforms, 2011, 36(14): 1948-1966. DOI: 10.1002/esp.2218
[2] EVANS S G, DELANEY K B, RANA N M. The occurrence and mechanism of catastrophic mass flows in the mountain cryosphere [M]// WILFRIED HAEBERLI, COLIN WHITEMAN. Snow and Ice-Related Hazards, Risks, and Disasters.Amsterdam: Elsevier, 2021: 541-596.
[3] 杨情情, 郑欣玉, 苏志满, 等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. [YANG Qingqing, ZHENG Xinyu, SU Zhiman, et al. Review on rock-ice avalanches [J]. Earth Science, 2022, 47(3): 935-949] DOI: 10.3799/dqkx.2021.158
[4] HUGGEL C, CLAGUE J J, KORUP O. Is climate change responsible for changing landslide activity in high mountains? [J]. Earth Surface Processes and Landforms, 2012, 37(1): 77-91. DOI: 10.1002/esp.2223
[5] WALTER F, AMANN F, KOS A, et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows [J]. Geomorphology, 2020, 351: 106933-106933. DOI: 10.1016/j.geomorph.2019.106933
[6] THAYYEN R J, MISHRA P K, JAIN S K, et al. Hanging glacier avalanche(Raunthigad-Rishiganga)and debris flow disaster on 7 February 2021, Uttarakhand, India: A preliminary assessment [J]. Natural Hazards, 2022, 114(2): 1939-1966. DOI: 10.1007/S11069-022-05454-0
[7] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 2000(4): 8-11. [YIN Yueping. Research on characteristics and disaster mitigation of the high-speed giant landslide in Yigong, Bomi, Tibet [J]. Hydrogeology & Engineering Geology, 2000(4): 8-11] DOI: 10.16030/j.cnki.issn.1000-3665.2000.04.003
[8] 刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 13(3): 11-20. [LIU Wei. Study on the characteristics of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet [J]. The Chinese Journal of Geological Hazards and Control, 2002, 13(3): 11-20] DOI: 10.3969/j.issn.1003-8035.2002.03.002
[9] 邢爱国, 徐娜娜, 宋新远. 易贡滑坡堰塞湖溃坝洪水分析[J]. 工程地质学报, 2010, 18(1): 78-83. [XING Aiguo, XU Nana, SONG Xinyuan. Numerical simulation of lake water down-stream flooding due to sudden breakage of Yigong landslide dam in Tibet [J]. Journal of Engineering Geology, 2010, 18(1): 78-83] DOI: 10.3969/j.issn.1004-9665.2010.01.011
[10] 胡明鉴, 程谦恭, 汪发武. 易贡远程高速滑坡形成原因试验探索[J]. 岩石力学与工程学报, 2009, 28(1): 138-143. [HU Mingjian, CHENG Qiangong, WANG Fawu. Experimental study on formation of Yigong long-distance high-speed landslide [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 138-143] DOI: 10.3321/j.issn:1000-6915.2009.01.018
[11] 殷跃平, 李滨, 张田田, 等. 印度查莫利“2·7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 1-8. [YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India [J]. The Chinese Journal of Geological Hazards and Control, 2021, 32(3): 1-8] DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01
[12] SHUGAR D H, JACQUEMART M, SHEAN D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya [J]. Science, 2021, 373(6552): 300-306. DOI: 10.1126/SCIENCE.ABH4455
[13] SCHNEIDER D, KAITNA R, DIETRICH W E, et al. Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches [J]. Cold Regions Science and Technology, 2011, 69(1): 70-90. DOI: 10.1016/j.coldregions.2011.07.001
[14] DONG Zhibo, SU Lijun. Flow regimes and basal normal stresses in rock-ice avalanches by experimental rotating drum tests [J]. Cold Regions Science and Technology, 2024, 218: 104081. DOI: 10.1016/J.COLDREGIONS.2023.104081
[15] DONG Zhibo, SU Lijun, HU Bingli, et al. Friction behaviors and flow resistances of rock-ice avalanches [J]. Cold Regions Science and Technology, 2024, 220: 104130. DOI: 10.1016/J.COLDREGIONS.2024.104130
[16] YANG Qingqing, SU Zhiman, CHENG Qiangong, et al. High mobility of rock-ice avalanches: Insights from small flume tests of gravel-ice mixtures [J]. Engineering Geology, 2019, 260: 105260. DOI: 10.1016/j.enggeo.2019.105260
[17] REN Yuhao, YANG Qingqing, CHENG Qiangong, et al. Solid-liquid interaction caused by minor wetting in gravel-ice mixtures: A key factor for the mobility of rock-ice avalanches [J]. Engineering Geology, 2021, 286(1): 106072. DOI: 10.1016/J.ENGGEO.2021.106072
[18] WANG Chenyang, CUI Yifei, SONG Dongri, et al. Effect of ice content on the interaction between rock-ice avalanche and rigid barrier: Physical and numerical modeling [J]. Computers and Geotechnics, 2022, 150: 104924. DOI: 10.1016/J.COMPGEO.2022.104924
[19] ZHU Yuanjia, JIANG Yuanjun, LIU Yutong, et al. Material characteristic-controlled particle segregation in rock-ice avalanche [J]. Computers and Geotechnics, 2024, 171: 106367. DOI: 10.1016/J.COMPGEO.2024.106367
[20] NOBACH H, HONKANEN M. Two-dimensional gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry [J]. Experiments in Fluids, 2005, 38(4): 511-515. DOI: 10.1007/s00348-005-0942-3
[21] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV)and photogrammetry [J]. Géotechnique, 2003, 53(7): 619-631. DOI: 10.1680/geot.2003.53.7.619
[22] STANIER S A, WHITE D J. Improved image-based deformation measurement in the centrifuge environment [J]. Geotechnical Testing Journal, 2013, 36(6): 915-928. DOI: 10.1520/GTJ20130044
[23] SARNO L, PAPA M N, TAI Y C, et al. A reliable PIV approach for measuring velocity profiles of highly sheared granular flows [C]//International Conference on Engineering Mechanics, Structures, Engineering Geology. Salerno(Italy): [s.n.], June 3-5, 2014.
[24] WANG S S, LI R, CHEN Q, et al. Experimental measurement of granular flow layers in the chute [J]. Powder Technology, 2020, 376: 22-30. DOI: 10.1016/j.powtec.2020.07.112
[25] SANVITALE N, BOWMAN E T. Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows [J]. Granular Matter, 2016, 18(3): 57. DOI: 10.1007/s10035-016-0620-6
[26] VALENTINO R, BARLA G, MONTRASIO L. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests [J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 153-177. DOI: 10.1007/s00603-006-0126-3
[27] 刘圣春, 姜婷婷, 董紫腾. 纯水和氯化钠溶液凝固过程的实验研究[J]. 化工进展, 2016, 35(S2): 68-74. [LIU Shengchun, JIANG Tingting, DONG Ziteng. Experimental study on water and sodium chloride solution solidification [J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 68-74] DOI: 10.16085/j.issn.1000-6613.2016.s2.011
[28] THIELICKE W, STAMHUIS E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB [J]. Journal of Open Research Software, 2014, 2(1): e30. DOI: 10.5334/jors.bl
[29] THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab [J]. Journal of Open Research Software, 2021, 9(1): 12. DOI: 10.5334/JORS.334
[30] SARNO L, CARRAVETTA A, TAI Y, et al. Measuring the velocity fields of granular flows: Employment of a multi-pass two-dimensional particle image velocimetry(2D-PIV)approach [J]. Advanced Powder Technology, 2018, 29(12): 3107-3123. DOI: 10.1016/j.apt.2018.08.014
[31] REN Yuhao, CAI Fei, YANG Qingqing, et al. Importance of liquid bridge forces in dynamics of rock-ice avalanches: Insights from discrete element simulations [J]. Computers and Geotechnics, 2024, 165: 105904. DOI: 10.1016/J.COMPGEO.2023.105904
[32] ZHAO C F, KRUYT N P, MILLET O. Capillary bridges between spherical particles under suction control: Rupture distances and capillary forces [J]. Powder Technology, 2020, 360: 622-634. DOI: 10.1016/j.powtec.2019.09.093
[33] PUDASAINI S P, MERGILI M. A multi-phase mass flow model [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(12): 2920-2942. DOI: 10.1029/2019JF005204
[34] RICHEFEU V, YOUSSOUFI M S E, RADJAI F. Shear strength properties of wet granular materials [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5): 051304. DOI: 10.1103/PhysRevE.73.051304
[35] KIETZIG A M, HATZIKIRIAKOS S G, ENGLEZOS P. Physics of ice friction [J]. Journal of Applied Physics, 2010, 107(8): 081101. DOI: 10.1063/1.3340792
[36] 李坤. 高速远程滑坡流态化运动及堆积机理研究[D]. 成都: 西南交通大学, 2022: 1-183. [LI Kun. Research on flow-like motion and deposition mechanisms of rock avalanches [D]. Chengdu: Southwest Jiaotong University, 2022: 1-183] DOI: 10.27414/d.cnki.gxnju.2022.000045
[37] MOBIUS M E, LAUDERDALE B E, NAGEL S R, et al. Size separation of granular particles [J]. Nature, 2001, 414(6861): 270.
[38] JOP P. Rheological properties of dense granular flows [J]. Comptes Rendus Physique, 2015, 16(1): 62-72. DOI: 10.1016/j.crhy.2014.12.001
[39] TRIPATHI A, KHAKHAR D V. Rheology of binary granular mixtures in the dense flow regime [J]. Physics of Fluids, 2011, 23(11): 113302. DOI: 10.1063/1.3653276
[40] PERSSON B N J. Ice friction: Role of non-uniform frictional heating and ice premelting [J]. The Journal of Chemical Physics, 2015, 143(22): 224701. DOI: 10.1063/1.4936299
[41] MILLER D A, ADAMS E E, SCHMIDT D S, et al. Preliminary experimental evidence of heating at the running surface of avalanching snow [J]. Cold Regions Science and Technology, 2003, 37(3): 421-427. DOI: 10.1016/S0165-232X(03)00081-8
[42] DAI Beibing, WU Fanyu, ZHONG Weitao, et al. Particle sorting in scree slopes: Characterization and interpretation from the micromechanical perspective [J]. Journal of Geophysical Research(Earth Surface), 2022, 127: e2021JF006372. DOI: 10.1029/2021JF006372