[1]覃 耀,杨情情*,罗 鑫,等.基于PIV技术的冰-岩碎屑流运动特性斜槽实验研究[J].山地学报,2025,(1):144-156.[doi:10.16089/j.cnki.1008-2786.000882]
 QIN Yao,YANG Qingqing*,LUO Xin,et al.Experimental Study on Mobility of Rock-Ice Avalanches by Flume Test Using PIV Technology[J].Mountain Research,2025,(1):144-156.[doi:10.16089/j.cnki.1008-2786.000882]
点击复制

基于PIV技术的冰-岩碎屑流运动特性斜槽实验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2025年第1期
页码:
144-156
栏目:
山地灾害
出版日期:
2025-02-20

文章信息/Info

Title:
Experimental Study on Mobility of Rock-Ice Avalanches by Flume Test Using PIV Technology
文章编号:
1008-2786-(20251-144-13)
作者:
覃 耀杨情情*罗 鑫佟璐冶余 晨
(西南交通大学 地球科学与工程学院,成都 611756)
Author(s):
QIN Yao YANG Qingqing* LUO Xin TONG Luye YU Chen
(Faculty of Geosciences and Engineering, Southwest Jiaotong University, Chengdu 611756, China)
关键词:
冰-岩碎屑流 斜槽实验 含冰量 融水量 剪切速率 流态特征
Keywords:
rock-ice avalanches flume test ice content water content shear rate flow regime
分类号:
P642.2
DOI:
10.16089/j.cnki.1008-2786.000882
文献标志码:
A
摘要:
冰-岩碎屑流作为高寒山区特有的多相复合型地质灾害,其运动过程涉及复杂的流固耦合效应。现有研究对微量相变水介导的固液耦合作用及其对颗粒流剪切力学行为与堆积形态的影响机制仍显不足。本研究采用斜槽实验,结合粒子图像测速技术(PIV),定量解析不同含冰量(0%、20%、40%和60%)条件下冰-岩混合材料的动力学响应规律及堆积特征。实验结果表明:(1)含冰量增加通过降低颗粒间摩擦系数显著提升物质运移能力。(2)薄层水膜润滑效应与毛细吸附阻力之间相互作用主导颗粒流运动状态。随融水量增加,颗粒表面水膜逐渐增厚,初期产生润滑作用,降低摩擦阻力,从而增强冰-岩混合材料的运动性和堆积体的侧展程度。进一步的水膜增厚导致毛细吸附作用增强摩阻,抑制运动性和堆积体的侧展。(3)剪切变形场呈现显著层状分异特征。冰屑糙率较小,多集中在颗粒流上层,受外力影响较小,保持了层间稳定性和速度一致性。底部岩屑剪切层的剪切速率高于表层冰屑剪切层,其剪切速率随层内冰屑含量增加而减小。(4)惯性数分析表明,20%和40%含冰量颗粒流的惯性数小于0.5,均呈现密集流特征,且40%含冰量颗粒流的惯性数更低。冰相组分通过抑制颗粒碰撞显著增强颗粒流的密集态流动特征。本研究有助于深化冰-岩碎屑流的运动机理和流态特征,为高寒山区冰-岩碎屑流的防灾减灾工作提供科学依据。
Abstract:
As a unique multiphase compoiste geo-hazard in alpine-cold areas, a typical gralular flow, rock-ice avalanches bear complex fluid-solid coupling effects during movements. There were quite unknow about rock-ice avalanches regarding its solid-liquid coupling mechanism mediated by trace phase change water and the consequence to the shear behavior and accumulation morphology.
In this study, flume experiments combined with Particle image velocimetry(PIV)were used to quantitatively analyze the dynamic response laws and deposition characteristics of gravel-ice mixtures under different ice content conditions(0%, 20%, 40% and 60%).
(1)The increase in ice content in rock-ice avalanches significantly enhanced the material transport ability by reducing inter-particle friction coefficient.
(2)The interaction between the lubrication effect of thin-layer water film and capillary adsorption resistance dominated the movement state of rock-ice avalanches. As meltwater amount grew, water film on particle surfaces thickened, which initially decreased friction and thus enhanced the mobility and lateral spreading of the accumulation, but with further water increased, capillary adsorption effects arose, leading to increased friction that restricted both mobility and lateral spreading.
(3)In the shear deformation field, it exhibited significant layered differentiation characteristics. Ice particles had a smaller roughness and were mostly concentrated in the upper layer of rock-ice avalanches, experiencing less influence from external forces and maintaining interlayer stability and velocity consistency. The shear rate in the bottom debris shear layer significantly exceeded that of the surface shear layer, with shear rate progressively reducing as ice content increased within the stratified structure.
(4)It found by inertial number analysis that the inertial numbers of 20% and 40% ice-content graluar flows were less than 0.5, both of which showed dense flow characteristics, with even lower inertial number for the flow of 40% ice-content. The ice-phase component significantly enhanced the intensive state of flow by inhibiting particle collisions.
This study contributes to deepening the understanding of the motion mechanisms and flow characteristics of rock-ice avalanches, providing a scientific basis for disaster prevention and mitigation efforts related to rock-ice avalanches in alpine-cold mountainous regions.

参考文献/References:

[1] SCHNEIDER D, HUGGEL C, HAEBERLI W, et al. Unraveling driving factors for large rock-ice avalanche mobility [J]. Earth Surface Processes and Landforms, 2011, 36(14): 1948-1966. DOI: 10.1002/esp.2218
[2] EVANS S G, DELANEY K B, RANA N M. The occurrence and mechanism of catastrophic mass flows in the mountain cryosphere [M]// WILFRIED HAEBERLI, COLIN WHITEMAN. Snow and Ice-Related Hazards, Risks, and Disasters.Amsterdam: Elsevier, 2021: 541-596.
[3] 杨情情, 郑欣玉, 苏志满, 等. 高速远程冰-岩碎屑流研究进展[J]. 地球科学, 2022, 47(3): 935-949. [YANG Qingqing, ZHENG Xinyu, SU Zhiman, et al. Review on rock-ice avalanches [J]. Earth Science, 2022, 47(3): 935-949] DOI: 10.3799/dqkx.2021.158
[4] HUGGEL C, CLAGUE J J, KORUP O. Is climate change responsible for changing landslide activity in high mountains? [J]. Earth Surface Processes and Landforms, 2012, 37(1): 77-91. DOI: 10.1002/esp.2223
[5] WALTER F, AMANN F, KOS A, et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows [J]. Geomorphology, 2020, 351: 106933-106933. DOI: 10.1016/j.geomorph.2019.106933
[6] THAYYEN R J, MISHRA P K, JAIN S K, et al. Hanging glacier avalanche(Raunthigad-Rishiganga)and debris flow disaster on 7 February 2021, Uttarakhand, India: A preliminary assessment [J]. Natural Hazards, 2022, 114(2): 1939-1966. DOI: 10.1007/S11069-022-05454-0
[7] 殷跃平. 西藏波密易贡高速巨型滑坡特征及减灾研究[J]. 水文地质工程地质, 2000(4): 8-11. [YIN Yueping. Research on characteristics and disaster mitigation of the high-speed giant landslide in Yigong, Bomi, Tibet [J]. Hydrogeology & Engineering Geology, 2000(4): 8-11] DOI: 10.16030/j.cnki.issn.1000-3665.2000.04.003
[8] 刘伟. 西藏易贡巨型超高速远程滑坡地质灾害链特征研析[J]. 中国地质灾害与防治学报, 2002, 13(3): 11-20. [LIU Wei. Study on the characteristics of huge scale-super highspeed-long distance landslide chain in Yigong, Tibet [J]. The Chinese Journal of Geological Hazards and Control, 2002, 13(3): 11-20] DOI: 10.3969/j.issn.1003-8035.2002.03.002
[9] 邢爱国, 徐娜娜, 宋新远. 易贡滑坡堰塞湖溃坝洪水分析[J]. 工程地质学报, 2010, 18(1): 78-83. [XING Aiguo, XU Nana, SONG Xinyuan. Numerical simulation of lake water down-stream flooding due to sudden breakage of Yigong landslide dam in Tibet [J]. Journal of Engineering Geology, 2010, 18(1): 78-83] DOI: 10.3969/j.issn.1004-9665.2010.01.011
[10] 胡明鉴, 程谦恭, 汪发武. 易贡远程高速滑坡形成原因试验探索[J]. 岩石力学与工程学报, 2009, 28(1): 138-143. [HU Mingjian, CHENG Qiangong, WANG Fawu. Experimental study on formation of Yigong long-distance high-speed landslide [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(1): 138-143] DOI: 10.3321/j.issn:1000-6915.2009.01.018
[11] 殷跃平, 李滨, 张田田, 等. 印度查莫利“2·7”冰岩山崩堵江溃决洪水灾害链研究[J]. 中国地质灾害与防治学报, 2021, 32(3): 1-8. [YIN Yueping, LI Bin, ZHANG Tiantian, et al. The February 7 of 2021 glacier-rock avalanche and the outburst flooding disaster chain in Chamoli, India [J]. The Chinese Journal of Geological Hazards and Control, 2021, 32(3): 1-8] DOI: 10.16031/j.cnki.issn.1003-8035.2021.03-01
[12] SHUGAR D H, JACQUEMART M, SHEAN D, et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya [J]. Science, 2021, 373(6552): 300-306. DOI: 10.1126/SCIENCE.ABH4455
[13] SCHNEIDER D, KAITNA R, DIETRICH W E, et al. Frictional behavior of granular gravel-ice mixtures in vertically rotating drum experiments and implications for rock-ice avalanches [J]. Cold Regions Science and Technology, 2011, 69(1): 70-90. DOI: 10.1016/j.coldregions.2011.07.001
[14] DONG Zhibo, SU Lijun. Flow regimes and basal normal stresses in rock-ice avalanches by experimental rotating drum tests [J]. Cold Regions Science and Technology, 2024, 218: 104081. DOI: 10.1016/J.COLDREGIONS.2023.104081
[15] DONG Zhibo, SU Lijun, HU Bingli, et al. Friction behaviors and flow resistances of rock-ice avalanches [J]. Cold Regions Science and Technology, 2024, 220: 104130. DOI: 10.1016/J.COLDREGIONS.2024.104130
[16] YANG Qingqing, SU Zhiman, CHENG Qiangong, et al. High mobility of rock-ice avalanches: Insights from small flume tests of gravel-ice mixtures [J]. Engineering Geology, 2019, 260: 105260. DOI: 10.1016/j.enggeo.2019.105260
[17] REN Yuhao, YANG Qingqing, CHENG Qiangong, et al. Solid-liquid interaction caused by minor wetting in gravel-ice mixtures: A key factor for the mobility of rock-ice avalanches [J]. Engineering Geology, 2021, 286(1): 106072. DOI: 10.1016/J.ENGGEO.2021.106072
[18] WANG Chenyang, CUI Yifei, SONG Dongri, et al. Effect of ice content on the interaction between rock-ice avalanche and rigid barrier: Physical and numerical modeling [J]. Computers and Geotechnics, 2022, 150: 104924. DOI: 10.1016/J.COMPGEO.2022.104924
[19] ZHU Yuanjia, JIANG Yuanjun, LIU Yutong, et al. Material characteristic-controlled particle segregation in rock-ice avalanche [J]. Computers and Geotechnics, 2024, 171: 106367. DOI: 10.1016/J.COMPGEO.2024.106367
[20] NOBACH H, HONKANEN M. Two-dimensional gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry [J]. Experiments in Fluids, 2005, 38(4): 511-515. DOI: 10.1007/s00348-005-0942-3
[21] WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV)and photogrammetry [J]. Géotechnique, 2003, 53(7): 619-631. DOI: 10.1680/geot.2003.53.7.619
[22] STANIER S A, WHITE D J. Improved image-based deformation measurement in the centrifuge environment [J]. Geotechnical Testing Journal, 2013, 36(6): 915-928. DOI: 10.1520/GTJ20130044
[23] SARNO L, PAPA M N, TAI Y C, et al. A reliable PIV approach for measuring velocity profiles of highly sheared granular flows [C]//International Conference on Engineering Mechanics, Structures, Engineering Geology. Salerno(Italy): [s.n.], June 3-5, 2014.
[24] WANG S S, LI R, CHEN Q, et al. Experimental measurement of granular flow layers in the chute [J]. Powder Technology, 2020, 376: 22-30. DOI: 10.1016/j.powtec.2020.07.112
[25] SANVITALE N, BOWMAN E T. Using PIV to measure granular temperature in saturated unsteady polydisperse granular flows [J]. Granular Matter, 2016, 18(3): 57. DOI: 10.1007/s10035-016-0620-6
[26] VALENTINO R, BARLA G, MONTRASIO L. Experimental analysis and micromechanical modelling of dry granular flow and impacts in laboratory flume tests [J]. Rock Mechanics and Rock Engineering, 2008, 41(1): 153-177. DOI: 10.1007/s00603-006-0126-3
[27] 刘圣春, 姜婷婷, 董紫腾. 纯水和氯化钠溶液凝固过程的实验研究[J]. 化工进展, 2016, 35(S2): 68-74. [LIU Shengchun, JIANG Tingting, DONG Ziteng. Experimental study on water and sodium chloride solution solidification [J]. Chemical Industry and Engineering Progress, 2016, 35(S2): 68-74] DOI: 10.16085/j.issn.1000-6613.2016.s2.011
[28] THIELICKE W, STAMHUIS E J. PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB [J]. Journal of Open Research Software, 2014, 2(1): e30. DOI: 10.5334/jors.bl
[29] THIELICKE W, SONNTAG R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab [J]. Journal of Open Research Software, 2021, 9(1): 12. DOI: 10.5334/JORS.334
[30] SARNO L, CARRAVETTA A, TAI Y, et al. Measuring the velocity fields of granular flows: Employment of a multi-pass two-dimensional particle image velocimetry(2D-PIV)approach [J]. Advanced Powder Technology, 2018, 29(12): 3107-3123. DOI: 10.1016/j.apt.2018.08.014
[31] REN Yuhao, CAI Fei, YANG Qingqing, et al. Importance of liquid bridge forces in dynamics of rock-ice avalanches: Insights from discrete element simulations [J]. Computers and Geotechnics, 2024, 165: 105904. DOI: 10.1016/J.COMPGEO.2023.105904
[32] ZHAO C F, KRUYT N P, MILLET O. Capillary bridges between spherical particles under suction control: Rupture distances and capillary forces [J]. Powder Technology, 2020, 360: 622-634. DOI: 10.1016/j.powtec.2019.09.093
[33] PUDASAINI S P, MERGILI M. A multi-phase mass flow model [J]. Journal of Geophysical Research: Earth Surface, 2019, 124(12): 2920-2942. DOI: 10.1029/2019JF005204
[34] RICHEFEU V, YOUSSOUFI M S E, RADJAI F. Shear strength properties of wet granular materials [J]. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5): 051304. DOI: 10.1103/PhysRevE.73.051304
[35] KIETZIG A M, HATZIKIRIAKOS S G, ENGLEZOS P. Physics of ice friction [J]. Journal of Applied Physics, 2010, 107(8): 081101. DOI: 10.1063/1.3340792
[36] 李坤. 高速远程滑坡流态化运动及堆积机理研究[D]. 成都: 西南交通大学, 2022: 1-183. [LI Kun. Research on flow-like motion and deposition mechanisms of rock avalanches [D]. Chengdu: Southwest Jiaotong University, 2022: 1-183] DOI: 10.27414/d.cnki.gxnju.2022.000045
[37] MOBIUS M E, LAUDERDALE B E, NAGEL S R, et al. Size separation of granular particles [J]. Nature, 2001, 414(6861): 270.
[38] JOP P. Rheological properties of dense granular flows [J]. Comptes Rendus Physique, 2015, 16(1): 62-72. DOI: 10.1016/j.crhy.2014.12.001
[39] TRIPATHI A, KHAKHAR D V. Rheology of binary granular mixtures in the dense flow regime [J]. Physics of Fluids, 2011, 23(11): 113302. DOI: 10.1063/1.3653276
[40] PERSSON B N J. Ice friction: Role of non-uniform frictional heating and ice premelting [J]. The Journal of Chemical Physics, 2015, 143(22): 224701. DOI: 10.1063/1.4936299
[41] MILLER D A, ADAMS E E, SCHMIDT D S, et al. Preliminary experimental evidence of heating at the running surface of avalanching snow [J]. Cold Regions Science and Technology, 2003, 37(3): 421-427. DOI: 10.1016/S0165-232X(03)00081-8
[42] DAI Beibing, WU Fanyu, ZHONG Weitao, et al. Particle sorting in scree slopes: Characterization and interpretation from the micromechanical perspective [J]. Journal of Geophysical Research(Earth Surface), 2022, 127: e2021JF006372. DOI: 10.1029/2021JF006372

备注/Memo

备注/Memo:
收稿日期(Received date): 2024-11- 02; 改回日期(Accepted date): 2025- 01-12
基金项目(Foundation item): 国家自然科学基金(42277127); 四川省自然科学基金(2022NSFSC1164)。[National Natural Science Foundation of China(42277127); Natural Science Foundation of Sichuan Province of China(2022NSFSC1164)]
作者简介(Biography): 覃耀(1999-),男,重庆大足人,硕士研究生,主要研究方向:地质灾害防治工程。[QIN Yao(1999-), male, born in Dazu, Chongqing, M.Sc. candidate, research on engineering for prevention and control of geological hazards] E-mail: qinyao@my.swjtu.edu.cn
*通讯作者(Corresponding author): 杨情情(1984-),女,湖南慈利人,博士,副教授,主要研究方向:冰-岩碎屑流的运动机理和堆积特征。[YANG Qingqing(1984-), female, born in Cili, Hunan Province, Ph.D., associate professor, research on dynamics and deposition characteristics of rock-ice avalanches] E-mail: yangqq@swjtu.edu.cn
更新日期/Last Update: 2025-01-30