[1]李 泳,等.颗粒组成与泥石流运动的涨落[J].山地学报,2016,(04):468-475.[doi:10.16089/j.cnki.1008-2786.000152]
 LI Yong,GOU Wanchun,WANG Baoliang,et al.Grain composition and the fluctuation of debris flow motion[J].Mountain Research,2016,(04):468-475.[doi:10.16089/j.cnki.1008-2786.000152]
点击复制

颗粒组成与泥石流运动的涨落()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年04期
页码:
468-475
栏目:
山地灾害
出版日期:
2016-08-01

文章信息/Info

Title:
Grain composition and the fluctuation of debris flow motion
文章编号:
1008-2786-(2016)4-468-08
作者:
李 泳1 2苟万春1 3王保亮4刘道川1 3
1.中国科学院山地灾害与地表过程重点实验室,四川 成都 610041;
2.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041;
3.中国科学院大学,北京 100049;
4. 西南交通大学土木工程学院,四川 成都 610031
Author(s):
LI Yong12GOU Wanchun13WANG Baoliang4LIU Daochuan13
1.Key Lab.of Mountain Hazards and Surface Processes, Chinese Academy of Sciences, Chengdu 610041,China;
2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences&Ministry of Water Conservancy, Chengdu 610041,China;
3.Graduate University of Chinese Academy of Sciences, Beijing 100049,China;
4.School of Civil Engineering, Southwest Jiao tong University, Chengdu 610031,China
关键词:
泥石流演化 颗粒分布 随机过程 动力学参数 泥石流评估
Keywords:
debris flow grain distribution curve scaling distribution distribution parameters
分类号:
P642.23 文献标志码: A
DOI:
10.16089/j.cnki.1008-2786.000152
文献标志码:
A
摘要:
泥石流物源、流体和堆积物的颗粒分布满足P(D)= CDexp(-D/Dc),其中参数C,μ和Dc由传统的粒径分布特征决定。μ随细颗粒(特别是粘粒)含量的增大而增大,Dc刻画粒径的范围,且随粗粒含量而增大。蒋家沟泥石流的观测表明,同一场泥石流包含着数十到数百个不同性质、流态和规模的阵流。阵流的涨落和多样性是与流体的颗粒组成密切相关的。一定的颗粒组成对应着一定的饱和颗粒浓度,决定一定的饱和流体状态。阵流的涨落,是在没有达到饱和状态时的随机运动的状态。阵流涨落随Dc增大而趋于平缓; 当流体达到饱和态时,阵流达到最大的流深、流速和流量,且与颗分参数(μ, Dc)具有幂函数关系。 运用本文的方法,可根据颗分参数来预估泥石流的性质和规模。
Abstract:
Debris flow body is composed of a wide range of grains and Its grain size distribution(GSD)is found to satisfy a general expression, P(D)=CDexp(-D/Dc). The grain composition can be described by the GSD parameters(μ, Dc), with μ representing fine content and Dc defining a characteristic scale of grain aggregate. It is found that the fluid has a coupled(μ, Dc) which is distinct from the source materials and deposits. Observations on debris flows in the Jiangjia Gully(JJG)have revealed great fluctuations; we fourd that the fluctuations are controlled by thair grain composition, and they will approach some steady state when granular concentration were saturated, and then both the flow depth and velocity gained a power-law relationship regardiy μ and Dc. From the method introduced here it is possible to use the GSD parameters of the sedimentary materials to estimate the probably maximal discharge and velocity of a debris flow.

参考文献/References:

[1] Liu Jingjing, Li Yong, Su Pengcheng,et al. Temporal variation of intermittent surges of debris flow[J]. Journal of Hydrology, 2009, 365(3-4): 322-328
[2] Li Yong, Liu Jinging, Hu Kaiheng, et al. Probability distribution of measured debris-flow velocity in Jiangjia Gully, Yunnan Province, China [J]. Natural Hazards, 2012, 60(2): 689-701
[3] Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear [J]. Proceedings of the Royal Socity:Ser A,1954, A225(1160): 49-63
[4] Savage S B. The mechanics of rapid granular flows [J]. Advances in Applied Mechanics, 1984, 24: 289-366
[5] Savage S B,Hutter K.The motion of a finite mass of granular material down a rough incline[J].Journal of fluid mechanics,1989,199:177-215
[6] Iverson R M. Physics of debris flow [J]. Rev. Geophys, 1997, 35: 245-296
[7] Folk R L, Ward W C. Brazos River bar, a study in the significance of grain size parameters [J].Sediment Petrol, 1957, 27: 3-26
[8] Vanoni V A.Sedimentation Engineering [M]. New York: American Society of Civil Engineers, 1975:424
[9] Kondolf G M,Adhikari A.Weibull vs. lognormal distributions for fluvial gravels[J]. Journal of Sedimentary Research,2000,70:456-460
[10] Rubin D M, Topping D J. Quantifying the relative importance of flow regulation and grain size regulation of suspended sediment transport α and tracking changes in grain size of bed sediment β [J]. Water Resources Research, 2001, 37(1):133-146
[11] Li Yong, Zhou Xiaojun, Su Pengcheng, et al. A scaling distribution of grain composition of debris flow [J]. Geomorphology, 2013, 192: 30-42
[12] Li Yong,Liu Jingjing,Guo Xiaojun,et al.Relationship between grain composition and debris flow characteristics:a case study of the Jiangjia Gully in China[J]. Landslide,2015, 12(1):19-28
[13] 李泳,谢江,周小军,等. 泥石流颗粒的标度分布[J].四川大学学报(工程科学版),2013,01:1-7[Li Yong, Xie Jiang, Zhou Xiaojun et al. A Scaling Distribution for Grain Composition of Debris Flow[J]. Journal of Sichuan University: Engineering Science Edition,2013,01: 1-7]
[14] 李泳, 胡凯衡,陈晓清. 泥石流堆积的分布[J].山地学报,2004,22(3):332-336[Li Yong, Hu Kaiheng, Chen Xiaoqing.Thickness Distribution of Debris-Flow Deposition[J]. Journal of Mountain Science,2004,22(3):332-336]
[15] Iverson R M, Denlinger R P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. J. Geophys. Res, 2001, 106(B1): 537-552
[16] Kaitna R, Rickenmann D. Flow of different material mixtures in a rotating drum[G]// Cui P,Cheng, Ch.(Eds.). Debris-Flow Hazards Mitigation, Fourth International DFHM Conference: Mechanics, Prediction and Assessment, 2007:10-13

相似文献/References:

[1]樊晓一a,b,夏贵平a,等.偏转地形约束条件下滑坡-碎屑流运动速度与颗粒分布的试验研究[J].山地学报,2024,(3):389.[doi:10-16089/j.cnki.1008-2786.000831]
 FAN Xiaoyia,b,XIA Guipinga,et al.An Experimental Study on the Velocity and Particle Distribution of Landslide-Debris Flow Motion under Deflected Terrain Constraints[J].Mountain Research,2024,(04):389.[doi:10-16089/j.cnki.1008-2786.000831]

备注/Memo

备注/Memo:
收稿日期(Received date):2015-09-22; 改回日期( Accepted):2015-11-03。
基金项目(Foundation item):国家自然科学基金项目(No. 41471011)。[This research is supported by National Natural Science Foundation,Grant No. 41471011. ]
作者简介(Biography):李泳(1967-),男,研究员,重庆人。主要从事泥石流的系统性研究。[Li Yong,the author,majors in researches on the systematic behaviors of debris flows.] E-mail:ylie@imde.ac.cn
更新日期/Last Update: 2016-07-30