[1]郑 伟,林培松,高全洲*.梅州山地化学风化过程及其碳汇效应[J].山地学报,2016,(05):571-579.[doi:10.16089/j.cnki.1008-2786.000164]
 ZHENG Wei,LIN Peisong,GAO Quanzhou.Chemical Weathering Processes and CO2 Consumption in Mountainous and Hilly Areas around Meizhou City, China[J].Mountain Research,2016,(05):571-579.[doi:10.16089/j.cnki.1008-2786.000164]
点击复制

梅州山地化学风化过程及其碳汇效应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年05期
页码:
571-579
栏目:
山地生态与环境
出版日期:
2016-09-30

文章信息/Info

Title:
Chemical Weathering Processes and CO2 Consumption in Mountainous and Hilly Areas around Meizhou City, China
文章编号:
1008-2786-(2016)5-571-09
作者:
郑 伟1林培松1高全洲12*
1.中山大学地理科学与规划学院,广东省城市化与地理环境空间模拟重点实验室,广东 广州 510275;
2.广东省地质过程与矿产资源探查重点实验室,广东 广州 510275
Author(s):
ZHENG Wei1 LIN Peisong1 GAO Quanzhou12
1.Guangdong Provincial Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China;
2.Guangdong Key Laboratory of Geological Processes and Mineral Resource Exploration, Guangzhou 510275, China
关键词:
化学风化 碳汇 侵蚀介质 硅酸盐矿物 山地丘陵
Keywords:
chemical weathering carbon sink erosive medium silicate minerals
分类号:
P512.1,P595
DOI:
10.16089/j.cnki.1008-2786.000164
文献标志码:
A
摘要:
根据梅州山地丘陵区地表径流的化学组成,应用物质平衡法和扣除法进行化学风化过程中CO2吸收通量的估算。结果表明:在硅酸盐岩分布面积为84%的湿热梅州山地丘陵区,河水总溶解性物质含量均值为41.58 mg/L,远低于世界河流平均值。河水离子组成以Ca2+、HCO-3以及溶解性硅(DSi)为主。岩石化学风化过程和大气降水作用对流域水化学特征的影响最为显著,其中硅酸盐岩的风化作用对水体离子的贡献率为81.46%~86.03%; 大气降水对水体离子的贡献率为10.86%; 碳酸盐矿物化学风化作用的贡献仅为5%左右。岩石化学风化过程对大气CO2的吸收通量为(3.46~5.26)×105 mol/(km2·a),高于全球平均值2.46×105 mol/(km2·a),说明北半球亚热带季风山区的表生地质作用构成全球碳汇的一个重要组成部分。
Abstract:
Based on the chemical compositions of runoff in the Meijiang River system around Meizhou City,Guangdong Province, China where mountain and hilly areas dominated.Consumption flux CO2 in the chemical weathering process was estimated using material balance method and deduction method. The results demonstrated that the average concentration of total dissolved solids in the Meijiang River system around Meizhou City, where silicate rock areas account for about 84%, is 41.58 mg/L, and that the mineralization of the Meijiang River water is much lower than the averages value of rivers worldwide(100 mg/L). Ca2+, HCO-3 and dissolved Si are the main ion in the river water. The chemical weathering process of rocks and atmospheric precipitation significantly influenced the chemical composition of water in the Meijiang River system. The ion contribution rate from the chemical weathering of silicate mineral, atmospheric precipitation and carbonate mineral weathering is 81.46%~86.03%, 10.86% and 5%, respectively. The consumption flux CO2 in the rock chemical weathering processes is(3.46~5.26)×105mol/(km2·a), which is higher than the global average value of 2.46×105mol/(km2·a), implying that the surface geological processes in humid monsoon subtropical mountainous areas of the Northern Hemisphere constitutes an important component of the global carbon sequestration.

参考文献/References:

[1] Yuan Daoxian. Carbon cycle in earth system and its effects on environment and resources [J]. Quaternary Sciences 2001, 21(3): 223-232[袁道先. 地球系统的碳循环和资源环境效应[J]. 第四纪研究, 2001, 21(3): 223-232]
[2] Yuan Daoxian. Modern karstology and global change study[J]. Earth Science Frontiers(China University of Geoscineces, Beijing)1997, 4(1): 17-25[袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997, 4(1): 17-25]
[3] Liu Zaihua. New progress and prospects in the study of rock-weathering-related carbon sinks[J], Chinese Science Bulletin, 2012,57(2): 95-102
[4] Gao Q Z, Tao Z. Chemical weathering and chemical runoffs in the seashore granite hills in South China[J]. Science China Earth Sciences, 2010, 53(8): 1195-1204
[5] Xu Z, Liu C Q. Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China[J]. Chemical Geology, 2007, 239(1): 83-95
[6] Gao Q Z, Tao Z, Huang X, et al. Chemical weathering and CO2 consumption in the Xijiang River basin, South China[J]. Geomorphology, 2009, 106(3): 324-332
[7] Beaulieu E, Goddéris Y, Labat D, et al. Impact of atmospheric CO2 levels on continental silicate weathering[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(7): 7007
[8] Wu W, Xu S, Yang J, et al. Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau[J]. Chemical Geology, 2008, 249(3): 307-320
[9] Wu L, Huh Y, Qin J, et al. Chemical weathering in the Upper Huang He(Yellow River)draining the eastern Qinghai-Tibet Plateau[J]. Geochimica et Cosmochimica Acta, 2005, 69(22): 5279-5294
[10] Tao Zhen, Gao Quanzhou, Wang Zhengang et al. Estimation of carbon sinks in chemical weathering in a humid subtropical mountainous basin[J], Chinese Science Bulletin, 2011, 56(35):3774-3782
[11] Xie Chenji, Gao Quanzhou, Tao Zhen, et al. Chemical weathering and CO2 consumption in the Dongjiang River Basin[J]. Acta Scientiae Circumstantiae, 2013, 33(8): 2123-2133[解晨骥, 高全洲, 陶贞, 等. 东江流域化学风化对大气CO2的吸收[J]. 环境科学学报, 2013, 33(8): 2123-2133]
[12] Luo Yingxin. Mei Zhou Geography[M]. Guang Zhou: Guangdong Map Press, 2001.[罗迎新. 梅州地理[M]. 广州: 广东地图出版社, 2001.]
[13] Liao Fulin, Yang Qihe, Shi Lifang. Analysis of Main Plant Communities in Baisuishan Mountain,Meizhou,Guangdong Province[J], Journal of Jiaying University(Natural Science),2007, 24(6): 47-54[廖富林, 杨期和, 石利芳. 梅州百岁山主要植物群落分析[J]. 嘉应学院学报, 2007, 24(6): 47-54]
[14] Meybeck M, Helmer R. The quality of rivers: from pristine stage to global pollution[J]. Global and Planetary Change, 1989, 1(4): 283-309
[15] Dalai T K, Krishnaswami S, Sarin M M. Major ion chemistry in the headwaters of the Yamuna river system:: Chemical weathering, its temperature dependence and CO2 consumption in the Himalaya[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3397-3416
[16] Huh Y, Tsoi M Y, Zaitsev A, et al. The fluvial geochemistry of the rivers of Eastern Siberia: I. Tributaries of the Lena River draining the sedimentary platform of the Siberian Craton[J]. Geochimica ET Cosmochimica Acta, 1998, 62(10): 1657-1676
[17] Gao Quanzhou, Tao Zhen. Chemical weathering and chemical runoffs in the seashore granite hills in South China. Science China Earth Sciences, 2010,53(8): 1195-1204
[18] Sun Yuanyuan, Ji Hongbing, Luo Jianmei et al. Hydro-geochemistry and chemical weathering processes of small watersheds in the southern JiangXi province[J]. Environmental Chemistry, 2006, 25(5): 550-557[孙媛媛, 季宏兵, 罗建美, 等. 赣南小流域的水文地球化学特征和主要风化过程[J]. 环境化学, 2006, 25(5): 550-557]
[19] Han Guilin, Liu Congqiang. Hydrogeochemistry of WuJiang River water in GuiZhou province. Carsologica Sinica. 2000, 19(1): 35-43[韩贵琳, 刘丛强. 贵州乌江水系的水文地球化学研究[J]. 中国岩溶, 2000, 19(1): 35-43]
[20] Grosbois C, Negrel P, Fouillac C, et al. Dissolved load of the Loire River: chemical and isotopic characterization[J]. Chemical Geology, 2000, 170(1): 179-201
[21] Ding Jian, Zhou Yongzhang, Gao Quanzhou, et al. Chemical Weathering Processes and atmospheric CO2 consumption in the Hanjiang River Basin,Guangdong Province[J].Acta Scientiarum Naturalium Universitatis Sunyatseni, 2013, 52(3): 117-127[丁健, 周永章, 高全洲, 等. 广东韩江流域化学风化作用及大气 CO2 消耗的分析[J]. 中山大学学报(自然科学版), 2013, 52(3): 117-127]
[22] Amiotte Suchet P, Probst J L. Modelling of atmospheric CO2 consumption by chemical weathering of rocks: Application to the Garonne, Congo and Amazon basins[J]. Chemical Geology, 1993, 107(3): 205-210
[23] Gaillardet J, Dupré B, Louvat P, et al. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers[J]. Chemical Geology, 1999, 159(1): 3-30
[24] Stallard R F, Edmond J M. Geochemistry of the Amazon: 1. Precipitation chemistry and the marine contribution to the dissolved load at the time of peak discharge[J]. Journal of Geophysical Research: Oceans(1978-2012), 1981, 86(C10): 9844-9858
[25] Meybeck M. Global chemical weathering of surficial rocks estimated from river dissolved loads[J]. American Journal of Science, 1987, 287(5): 401-428

相似文献/References:

[1]周俊,吴艳宏.贡嘎山海螺沟水化学主离子特征及其控制因素[J].山地学报,2012,(03):378.
 ZHOU Jun,WU Yanhong.Major Ion Chemistry of Waters in Hailuogou Catchment and the Possible Controls[J].Mountain Research,2012,(05):378.
[2]贠银娟,赵 军*.基于MODIS-NDVI数据的植被碳汇空间格局研究--以石羊河流域为例[J].山地学报,2018,(04):644.[doi:10.16089/j.cnki.1008-2786.000360]
 YUN Yinjuan,ZHAO Jun*.Spatial Pattern of Vegetation Carbon Sinks Based on MODIS-NDVI Data: A Case Study in Shiyang River Basin, China[J].Mountain Research,2018,(05):644.[doi:10.16089/j.cnki.1008-2786.000360]

备注/Memo

备注/Memo:
收稿日期(Received date):2015-06-05; 改回日期( Accepted):2016-01-22。
基金项目(Foundation item):国家自然科学基金项目(41340019,41071054); 广东省自然科学基金重点项目(2014A030311003)。 [National Natural Science Foundation of China(41340019, 41071054), and Natural Science Foundation of Guangdong Province(2014A03031103).]
作者简介(Biography):郑伟(1990-), 男,湖北宜昌人,硕士研究生,主要从事全球变化与碳循环研究。[Zheng Wei(1990-), male,born in Yichang, Hubei Province, M.Sc candidate, major in global changes and carbon cycle.] E-mail:sysuzhengw@163.com
*通信作者(Corresponding author):高全洲(1965-),男,教授,博士生导师,主要从事全球变化与碳循环研究。[Gao Quanzhou(1965-), male, professor, engaged in the study of global changes and carbon cycle.] E-mail: eesgqz@ mail.sysu.edu.cn
更新日期/Last Update: 2016-09-30