[1]周忠发,张绍云,曹明达,等.喀斯特地区洞穴壶穴形态的形成与发育[J].山地学报,2016,(06):698-706.[doi:10.16089/j.cnki.1008-2786.000176]
 ZHOU Zhongfa,ZHANG Shaoyun,CAO Mingda,et al.Formation and Development of Cavern Potholes in Karst Region[J].Mountain Research,2016,(06):698-706.[doi:10.16089/j.cnki.1008-2786.000176]
点击复制

喀斯特地区洞穴壶穴形态的形成与发育()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年06期
页码:
698-706
栏目:
山地生态环境
出版日期:
2016-12-08

文章信息/Info

Title:
Formation and Development of Cavern Potholes in Karst Region
文章编号:
1008-2786-(2016)6-698-09
作者:
周忠发12张绍云12曹明达12张 强12谢雅婷12
1.贵州师范大学喀斯特研究院,贵州 贵阳 550001;
2.国家喀斯特石漠化防治工程技术研究中心, 贵州 贵阳 550001
Author(s):
ZHOU Zhongfa12 ZHANG Shaoyun12 CAO Mingda12 ZHANG Qiang12XIE Yating12
1.School of Karst Science, Guizhou Normal University, Guiyang, Guizhou 550001, China
2.State Engineering Technology Institute for Karst Desertification Control, Guiyang, Guizhou 550001, China
关键词:
洞穴壶穴白云岩形态成因阴河洞双河洞系喀斯特
Keywords:
dolomite areas Shuanghe cave system Cave potholes morphology factors evolutionary mechanisms
分类号:
P931.1
DOI:
10.16089/j.cnki.1008-2786.000176
文献标志码:
A
摘要:
喀斯特洞穴河床壶穴是记录洞穴微地貌演化、洞道走向、水流与地下河床边界条件相互作用的关键性证据之一。通过对贵州绥阳双河洞穴系统,属娄山关组白云岩地下河段108处洞穴壶穴的形态及分布特征进行实地仔细观察和分析发现:该区地下河河床壶穴分为两种形式即跌水壶穴(plungeholes)和旋转流壶穴(eddyholes)。它的规模、形态及分布特征规律性较地表河床壶穴强,主要受水动力、洞道走向控制。由于洞内气候环境长期稳定,洞穴河床壶穴的形成与演化主要是水动力条件、洞道走向、岩性、洪冲积物综合作用的结果。本研究结果将丰富与完善壶穴不同地貌部位、不同岩性特征及成因,为洞穴河床壶穴形态的形成与发育提供科学论证,为洞穴微地貌演化过程及洞穴水动力研究发展提供科学依据。
Abstract:
Riverbed potholes in karst caves are significant indicators of micro-scale geomorphic evolution as well as underground drainage development. They has been known as convincing evidences of interaction between subsurface flow and cavern riverbed conditions. In this study, in-depth investigation were mobilized to explore the formation and feature of cavern pothole. A number of 108 caves were selected for survey in a section of Loushanguan dolomite underground riverbed of Suiyang Shuanghe cave system, Guizhou province. Results confirmed there are two forms of underground riverbed potholes, plunge pothole and eddy pothole.Their sizes, shapes, and distribution were controlled by underground hydraulic effects and evolution of subterranean drainage. Riverbed potholes appeared to be a relative regularity in formation as compared with those of potholes growing on ground surface riverbed. It was interpreted a long-term stabile cavern environment, a ultimate formation of cavern pothole as well as its ensuing evolution, all of those have derived from a combined function of underground hydrodynamic conditions, cavern drainage system, lithology, and alluvial deposits.This research will provide scientific proofs and insights for the formation and development of cavern pothole landscape, and it will enrich and refine researches on the characteristics and origins of caves at different geomorphological locations, with varied lithologic properties. Also the research achievements will form solid scientific basis for further investigation on cavern microrelief evolution and do contribute to development of cave hydrodynamics.

参考文献/References:

[1] IPCC. Climate change 2007: The physical science basis[M]. The Fourth Assessment Report of Working Group.Cambridge:Cambridge Univ Press, 2007.
[2] 丁一汇, 任国玉, 石广玉, 等. 气候变化国家评估报告(Ⅰ): 中国气候变化的历史和未来趋势[J]. 气候变化研究进展,2006, 2(1):3-8[Ding Yihui, Ren Guoyu, Shi Guanyu, et al. National assessment rePort of climate change(I): climate change in China and its future trend[J]. Advancesin Climate Change Research,2006, 2(1):3-8]
[3] Araújo MB, Pearson RG, Thuiller W, et al. Validation of species–climate impact models under climate change[J]. Global Change Biology, 2005, 11(9): 1504-1513
[4] Root TL, Price JT, Hall KR, et al. Fingerprints of global warming on wild animals and plants[J]. Nature, 2003, 421(6918): 57-60
[5] Walther GR, Post E, Convey P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389-395
[6] Erasmus, BF, Jaarsveld AS, Chown SL, et al. Vulnerability of South African animal taxa to climate change[J]. Global Change Biology, 2002, 8(7):. 679-693
[7] 钟永德, 李迈和,Norbert K.地球暖化促进植物迁移与入侵[J]. 地理研究, 2004, 23(3): 347-356[Zhong Yongde,Li Maihe,Norbert Kraeuchi. Global warming facilitates plant migration and biological invasion[J]. Geographical Research, 2004,23(3): 347-356]
[8] Shafer SL, BartleinPJ, and ThompsonRS. Potential changes in the distributions of western North America tree and shrub taxa under future climate scenarios[J]. Ecosystems, 2001, 4(3): 200-215
[9] Parmesan C and Yohe G. A globally coherent fingerprint of climate change impacts across natural systems[J]. Nature, 2003, 421(6918):37-42
[10] 曹福祥,徐庆军, 曹受金, et al.全球变暖对物种分布的影响研究进展[J]. 中南林业科技大学学报: 自然科学版, 2009,28(6): 86-89[Cao Fuxiang, Xu Qingjun, Cao Shoujin,et al. Advances of global warming impact on species distribution[J]. Journal of Central South University of Forestry & Technology,2009, 28(6): 86-89]
[11] 刘洋, 张健,杨万勤.高山生物多样性对气候变化响应的研究进展[J]. 生物多样性, 2009, 17(1): 88-96[Liu Yang, Zhang Jian, Yang Wanqin. Responses of alpine biodiversity to climate change[J]. Biodiversity Science, 2009, 17(1): 88-96]
[12] 李荔, 廖成云, 王撼, 等. 四川省生物多样性保护现状与对策[J]. 四川林勘设计, 2009, 4: 54-57[Li li, Liao Yunsheng, Wang Han, ea al. The Biodiversity conservation present situation and the countermeasures in sichuan province[J] Sichuan Forestry Explorationand Design, 2009,4: 54-57]
[13] 王娟, 倪健.植物种分布的模拟研究进展[J]. 植物生态学报, 2006, 30(6): 1040-1053[Wang Juan, Ni Jian. Review of modelling the distribution of plant species [J]. Journal of Plant Ecology,2006,30(6): 1040-1053]
[14]Phillips S J, Anderson R P, Schapire R E. Maximum entropymodeling of species geographic distributions [J]. Ecological Modelling, 2006, 190(3-4): 231-259
[15] 曹向锋,钱国良, 胡白石,等.采用生态位模型预测黄顶菊在中国的潜在适生区[J]. 应用生态学报, 2010,21(12): 3063-3069[Cao Xiangfeng,Qian Guoliang,Hu Baishi,et al. Prediction of potential suitable distrlbutlon area of Flaveria bidentis in China based on niche models[J]. Chinese Journal of Applied Ecology, 2010, 21(12): 3063-3069]
[16] Saatchi S, Buermann W, Ter Steege H,et al. Modeling distribution of Amazonian tree species and diversity usingremote sensing measurements[J]. Remote Sensing of Environment, 2008, 112: 2000-2017
[17] Peterson AT. Predicting the geography of species' invasions via ecological niche modeling[J]. The Quarterly Review of Biology, 2003, 78(4):419-433
[18] 吴建国.气候变化对7种保护植物分布的潜在影响[J]. 武汉植物学研究, 2010, 28(4): 437-452[Wu Jianguo. Potential effects of clmiate change on the distribution of seven protected plants in China[J]. Journal of Wuhan Botanical Research, 2010, 28(4): 437-452]
[19] 吕佳佳, 气候变化对我国主要珍稀濒危物种分布影响及其适应对策研究[D]. 北京:中国环境科学研究院: 2009.[Lv Jiajia. The impacts of climate change on the distribution of rare or endangered species in China and adaPtation strategie[D]. Beijing:Chinese Research Academy of Environmental Sciences, 2009.]
[20] 王锐婷, 范雄, 刘庆, et al.气候变化对四川大熊猫栖息地的影响[J]. 高原山地气象研究, 2010, 30(4): 57-60[Wang Ruiting, Fan xiong, Liu Qing, et al. Impacts of climate change on giant panda habitat in Sichuan[J]. Plateau and Mountain Meteorology Research, 2010, 30(4): 57-60]
[21] 张清华, 阎洪.气候变化对我国珍稀濒危树种——珙桐地理分布的影响研究[J]. 林业科学, 2000, 36(2):47-52[Zhang Qinghua, Guo Quanshui, Xu Deying,et al. Influence ofclimate changes on geographicaldistribution of da vidia involucrata, the precious and endangered species native to China[J]. Scientia Silvae Sinicae,2000, 36(2):47-52]
[22] Hickling R, Roy D B, Hill J K, et al. The distributions of a wide range of taxonomic groups are expanding polewards[J]. Global Change Biology, 2006, 12(3): 450-455
[23] 彭红兰.气候变化对川金丝猴栖息地的影响研究.中国林业科学研究院,2010.[Peng Honglan. Projected impacts of climate change on habitat of golden monkey. Chinese academy of forestry,2010.]
[24]Thuiller W, Lavorel S, Araújo M B,et al. Climate change threats to plant diversity in Europe[J]. Proceedings of the National Academy of Sciences of the united States of America, 2005, 102(23): 8245-8250
[25] Thomas, CD, FrancoAM and HillJK. Range retractions and extinction in the face of climate warming[J]. Trends in Ecology & Evolution, 2006, 21(8): 415-416
[26] Forister M L, McCall A C, Sanders N J, et al. Compounded effects of climate change and habitat alteration shift patterns of butterfly diversity[J]. Proceedings of the National Academy of Sciences, 2010, 107(5): 2088-2092
[27] Ackerly D D, Loarie S R, Cornwell W K, et al. The geography of climate change: implications for conservation biogeography[J]. Diversity and Distributions, 2010, 16(3): 476-487
[28] Cowie, J. Climate change: biological and human aspects[M]. Cambridge University Press, 2012
[29] Dillon M E, Wang G,Huey R B. Global metabolic impacts of recent climate warming[J]. Nature, 2010, 467(7316): 704-706
[30]Wiens J A, Stralberg D, Jongsomjit D,et al. Niches, models, and climate change: assessing the assumptions and uncertainties[J]. Proceedings of the National Academy of Sciences, 2009, 106(Supplement 2): 19729-19736
[31] 吴军, 徐海根,陈炼.气候变化对物种影响研究综述[J]. 生态与农村环境学报, 2011, 27(4): 1-6[Wu Jun, Xu Haigen, Chen Lian. A review of impacts of climate change on species[J]. Journal of Ecology and Rural Environment. 2011, 27(4): 1-6]
[32] Willis, K J,Bhagwat S A. Biodiversity and climate change[J]. Science, 2009, 326(5954): 806

备注/Memo

备注/Memo:
基金项目(Foundation item):国家自然科学基金地区项目(41361081); 贵州师范大学研究生创新基金资助(201533); 贵州省科技计划(黔科合G字[2014]4004-2号); 贵州省重大应用基础研究项目(黔科合JZ字[2014]200201)[National Natural Science Foundation(41361081); Guizhou Normal University Graduate Innovation Fund(201533); Guizhou Science and Technology Plan(Qian Ke he G [2014]4004-2); Guizhou Major Application of Basic Research Project(Qian Ke he JZ [2014]200201)]
作者简介(Biography):周忠发(1969-),男,贵州遵义人,博士生导师,喀斯特地貌与洞穴 [Zhou Zhongfa(1969-), male,born in Zunyi Guizhou,professor,research on Karst landform and cave] E-mail:fa6897@163.com
更新日期/Last Update: 2016-11-30