[1]莫慧珠,沙丽清*.西双版纳不同复合农林模式橡胶林碳储量及固碳潜力[J].山地学报,2016,(06):707-715.[doi:10.16089/j.cnki.1008-2786.000177]
 MO Huizhu,SHA Liqing*.The Carbon Stock and Carbon Sequestration Potential of Rubber Plantations under Different Agro-forestry Systems in Xishuangbanna, SW China[J].Mountain Research,2016,(06):707-715.[doi:10.16089/j.cnki.1008-2786.000177]
点击复制

西双版纳不同复合农林模式橡胶林碳储量及固碳潜力()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2016年06期
页码:
707-715
栏目:
山地生态环境
出版日期:
2016-12-08

文章信息/Info

Title:
The Carbon Stock and Carbon Sequestration Potential of Rubber Plantations under Different Agro-forestry Systems in Xishuangbanna, SW China
文章编号:
1008-2786-(2016)6-707-09
作者:
莫慧珠12沙丽清1*
1.中国科学院西双版纳热带植物园热带森林生态学重点实验室,云南昆明650223;
2.中国科学院大学生命科学学院,北京100049
Author(s):
MO Huizhu12SHA Liqing1*
1.Key Laboratory of Tropical Forest Ecology,Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences,Yunnan Kunming 650223,China;
2.University of Chinese Academy of Sciences,Beijing 100049,China
关键词:
橡胶林 复合农林 碳储量 固碳潜力 西双版纳
Keywords:
rubber plantation agro-forestry carbon storage carbon sequestration potential Xishuangbanna
分类号:
Q948
DOI:
10.16089/j.cnki.1008-2786.000177
文献标志码:
A
摘要:
以新垦植橡胶林、成熟橡胶林、高海拔橡胶林为研究对象,对其进行人为固碳增汇管理,比较三种复合农林模式橡胶林与同条件下橡胶纯林的植被碳储量及其未来固碳潜力,并分析三种复合农林橡胶林土壤碳储量。植被生物量碳储量通过各类增汇植物的生物量回归模型、热带树种生物量通用模型、异速生长模型进行拟合预测; 土壤碳储量通过土壤剖面分层采样(0~10 cm,10~20 cm,20~30 cm,30~50 cm,50~100 cm)进行估算。研究显示:1. 复合农林橡胶林现存生物量碳储量为1.19~52.89 t/hm2,10 a后固碳潜力为1.28 ~106.08 t/hm2,20 a后固碳潜力为2.23~233.89 t/hm2; 2. 林下添加增汇植物后土壤碳储量显著高于橡胶林,新垦植模式中,橡胶+大叶千斤拔土壤碳储量比橡胶林增加54.95 t/hm2; 成熟橡胶林模式中,橡胶+大叶千斤拔土壤碳储量比橡胶林增加35.58 t/hm2,橡胶+可可土壤碳储量比橡胶林增加4.33 t/hm2。结果表明:构建复合农林橡胶林可总体提高橡胶林植被碳储量及固碳潜力,提高土壤碳储量,但增汇植物种类、种植密度、生长速度不同,固碳潜力大小不一。
Abstract:
Carbon sequestration management was operated in newly-planted rubber plantations, mature rubber plantations and high-altitude rubber plantations. We compared vegetation carbon storage, carbon sequestration potential, and soil carbon storage in different agro-forestry systems and pure rubber plantations. The vegetation carbon storage was estimated by tree biomass regression model, tropical trees biomass universal model, and allometric model. Soil carbon storage was estimated by soil profile stratified sampling(0~10 cm, 10~20 cm, 20 ~30 cm, 30~50 cm, 50~100 cm). The results showed: 1. The existing biomass carbon storage was 1.19~52.89 t/hm2, and the carbon sequestration potential was 1.28~106.08 t/hm2 in 10 years later and 2.23~233.89 t/hm2 in 20 years later. 2. After carbon sink plants were added in rubber plantations, soil carbon storage was significantly higher than that of pure rubber plantations. For newly-cultivated rubber plantations, soil carbon storage of rubber with flemingia macrophylla increased 54.95 t/hm2 than that of pure rubber plantations; for mature rubber plantations, rubber with flemingia macrophylla increased 35.58 t/hm2, and rubber with cocoa increased 4.33 t/hm2. The carbon sequestration management can improve the overall vegetation carbon storage and carbon sequestration potential, meanwhile increase soil carbon storage. However, carbon sequestration potential varies due to different plant species, planting density, and growth rates.

参考文献/References:

[1] Legros F. The mobility of long-runout landslides [J]. Engineering Geology, 2002, 63:301-331
[2] 黄润秋, 许强. 中国典型灾难性滑坡[M]. 北京:科学出版社.2008: 131-132[Huang Runqiu,Xu Qiang. Catastrophic landslides in China [M]. Beijing:Science Press,2008:131-132]
[3] Devoli G,Blasio F V D,Elverhøi A,et al. Statistical Analysis of Landslide Events in Central America and their Run-out Distance. Geotechnical and Geological Engineering, 2009, 27:23-42
[4] Pirulli M. Morphology and Substrate Control on the Dynamics of Flowlike Landslides. Journal of Geotechnical and Geoenvironmental Engineering, 2010,136(2): 376-388
[5] Ouyang C,He S,Xu Q,LUO Y,Zhang W. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain. Computers & Geosciences, 2013, 52, 1-10
[6] 杨裕云,胡新丽,王亮清等. 高速远程崩滑及其形成条件初探[J].工程地质学报, 2011,19( 6): 809- 815[Yang Yuyun,Hu Xinli,Wang Liangqing,et al. Long runout rockfall-landslides and their forming conditions[J]. Journal of Engineering Geology, 2011,19(6): 809-815]
[7] 张龙,唐辉明,熊承仁等. 鸡尾山高速远程滑坡运动过程PFC3D 模拟[J]. 岩石力学与工程学报,2012,31(S1): 2601-2611[Zhang Long,Tang Huiming,Xiong Chengren,et al. Movement process simulation of high-speed long-distance jiweishan landslide with PFC3D [J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1):2601- 2611]
[8] 王玉峰,程谦恭,朱 圻. 汶川地震触发高速远程滑坡–碎屑流堆积反粒序特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(6): 1089-1105[Wang Yufeng,Cheng Qiangong,Zhu Qi. Inverse grading analysis of deposit from rock avalanches triggered by wenchuan earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1089-1105]
[9] 郝明辉, 许强, 杨磊. 滑坡-碎屑流物理模型试验及运动机制探讨[J]. 岩土力学, 2014, 35(S1): 127-132[Hao Minghui,Xu Qiang,Yang Lei,et al. Physical modeling and movement mechanism of landslide-debris avalanches [J]. Rock and Soil Mechanics, 2014, 35(S1): 127-132]
[10] Yang Q Q,Cai F,Ugai K,et al. Some factors affecting mass-front velocity of rapid dry granular flows in a large flume. Engineering Geology, 2011, 122:249-260.
[11] Kokelaara B P,Grahama R L,Gray J M N T,Vallancec J W. Fine-grained linings of leveed channels facilitate runout of granular flows. Earth and Planetary Science Letters, 2014, 385:172-180.
[12] 樊晓一,田述军,段晓冬, 张友谊. 地形因子对坡脚型地震滑坡运动参数的影响研究. 岩石力学与工程学报, 2014, 33(S2):4056-4066[Fan Xiaoyi,Tian Shujun,Duan Xiaodong,Zhang Youyi. Study of topography factors influence on motion Parameters for seismic slope-toe landslides [J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2):4056-4066]
[13] 黄润秋,刘卫华. 基于正交设计的滚石运动特征现场试验研究[J]. 岩石力学与工程学报, 2009, 28(5): 882-891[Huang Runqiu,Liu Weihua. In-situ test study of characteristics of rolling rock blocks based on orthogonal design[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(5): 882-891]
[14] 樊晓一,乔建平. 坡、场因数对大型滑坡的运动特征影响研究[J]. 岩石力学与工程学报,2010, 29(11): 2337-2347[Fan Xiaoyi,Qiao Jianping. Influence of landslide and ground factors on large-scale landslide movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(11): 2337-2347]

相似文献/References:

[1]徐凡珍,胡古,沙丽清,等.施肥对橡胶人工林土壤呼吸、土壤微生物生物量碳和土壤养分的影响[J].山地学报,2014,(02):179.
 XU Fanzhen,HU Gu,SHA Liqing.The Effects of Nitrogen and Phosphorus Fertilizers on Soil Respiration, Soil Microbial Biomass Carbon and Soil Nutrients of Rubber Plantation in Xishuangbanna, SW China[J].Mountain Research,2014,(06):179.
[2]杨济达,欧晓昆,呙靖雯,等.基于CA-Markov和Geomod模型橡胶林变化预测比较[J].山地学报,2014,(03):267.
 YANG Jida,GUO Jingwen,OU Xiaokun,et al.Comparison of CA-Markov and Geomod Models for Rubber Plantation Prediction[J].Mountain Research,2014,(06):267.
[3]周文君,沙丽清,沈守艮,等.西双版纳橡胶林土壤呼吸季节变化及其影响因子[J].山地学报,2008,(03):317.

备注/Memo

备注/Memo:
基金项目(Foundation item):中国科学院战略性先导科技专项(XDA05070304); 中国科学院“一三五”专项——突破三(XTBG-T03); 国家基金重大项目(31290221); 中国科学院科技服务网络计划(STS计划)项目(KFJ-EW-STS-084); 国家重点基础研究发展计划项目(2010CB833501)["Strategic Priority Research Program" of the Chinese Academy of Sciences(XDA05070304); CAS 135 Program(XTBG-T03); Key program of NSF(31290221); Science and Technology Service Network Initiative of Chinese Academy of Sciences(No.KFJ-EW-STS-084)and Development Program in Basic Science of China(2010CB833501)]
作者简介(Biography):莫慧珠(1989-),女,广西贺州人,硕士研究生,主要从事橡胶林复合农林的研究 [Mo Huizhu(1989-),female,born in Hezhou of Guangxi Province,M.Sc. candidate,mainly study agroforestry ecosystem of rubber plantation] E-mail:mhzjiayou@163.com
*通信作者(Corresponding author):沙丽清, 男,研究员 [Sha Liqing, male, professor]E-mail:shalq@xtbg.ac.cn
更新日期/Last Update: 2016-11-30