[1]朱万泽,冉 飞,李迈和,等.贡嘎山高山林线动态与生理形成机制[J].山地学报,2017,(05):622-628.[doi:10.16089/j.cnki.1008-2786.000260]
 ZHU Wanze,RAN Fei,LI Maihe,et al.Alpine Timberline Dynamics and Physiological Mechanisms of the Timberline Formation on the Mt.Gongga[J].Mountain Research,2017,(05):622-628.[doi:10.16089/j.cnki.1008-2786.000260]
点击复制

贡嘎山高山林线动态与生理形成机制()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年05期
页码:
622-628
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
Alpine Timberline Dynamics and Physiological Mechanisms of the Timberline Formation on the Mt.Gongga
文章编号:
1008-2786-(2017)5-622-07
作者:
朱万泽1冉 飞1李迈和2王文志1贾 敏1 3
1.中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041;
2.瑞士联邦林业、雪和景观研究院;
3.中国科学院大学,北京100049
Author(s):
ZHU Wanze1 RAN Fei1 LI Maihe3 WANG Wenzhi1 JIA Min1 2
1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China;
2.University of Chinese Academy of Sciences, Beijing 100049,China;
3.Swiss Federal Research Institute WSL, Zuercherstrasse 111, CH-8903 Birmensdorf, Switzerland
关键词:
高山林线动态 非结构碳水化合物 碳限制 全球变化 贡嘎山
Keywords:
Alpine timberline dynamics non-structural carbohydrates carbon limitation climate change Mt.Gongga
分类号:
Q948
DOI:
10.16089/j.cnki.1008-2786.000260
文献标志码:
A
摘要:
作为典型的生态交错带,高山林线因其特殊的结构、功能及对气候变化的高度敏感性,已成为全球气候变化研究的热点之一。本文分析了贡嘎山高山林线动态,林线峨眉冷杉径向生长与气候变化的关系; 基于贡嘎山地区现有的峨眉冷杉、川西云杉、川滇高山栎3个林线树种非结构碳水化合物(NSC)测定,探讨了贡嘎山高山林线形成生理机制,贡嘎山地区林线树木可能遭受冬季碳限制,“碳源与碳汇”的平衡关系影响高山林线的位置与分布,生长在高山恶劣环境条件下林线树种的发育和幸存,不仅依赖于最小需求的NSC浓度,而且要求冬季高于3的可溶性糖:淀粉比率,以成功越冬和维持其正碳平衡; 指出了今后应重点关注气候变化背景下区域尺度高山林线动态长期观测与模拟、高山林线树木对极端环境的生理生态适应机制、高山林线森林植被碳源-汇关系的长期监测等研究。
Abstract:
As a kind of typical ecotone, alpine timberline has become one of the major concerns in global climate change studies because of its special structure, function and high sensitivity to climate change.An increased understanding on physiological mechanism of timberline formation is of great importance in forecasting timberline dynamics under future climate change.This paper analyzed the dynamic of alpine timberline on the Mt.Gongga, and treeline(Abies fabri)radial growth trends and their relationship with climate change.Based on the previous non-structural carbohydrates(NSC)determination in 3 timberline tree species(A.fabri, Picea likiangensis var.balfouriana, Quercus semicarpifolia)on the Gongga mountain, the physiological mechanism of the alpine timberline formation were briefly summarized.The results of the combined treelines species showed that the treeline trees may suffer from a winter carbon shortage.The source capacity and the sink capacity of trees influence its tissue NSC concentrations and the carbon balance.The persistence and development of treeline trees in a harsh alpine environment may require a minimum level of the total NSC concentration, a sufficiently high sugar: starch ratio, and a balanced carbon source-sink relationship.The future research should be focused on the long term observation and simulation of alpine timberline dynamics on the regional scale under climate change, physio-ecological adaptation of timberline trees to extreme harsh environment, and long-term monitoring of relationship between the carbon source and the carbon sink in the timberline forest vegetation.

参考文献/References:

[1] KÖRNER C.Alpine Treelines: Functional Ecology of the Global High Elevation Tree Limits [M].Basel: Springer, 2012: 15-20.
[2] RICHARDSON AD, FRIEDLAND AJ.A review of the theories to explain arctic and alpine treelines around the world theories to explain arctic and alpine treelines [J].Journal of Sustainable Forestry, 2009, 28(1-2): 218-242.
[3] Wieser G, Matyssek R, Luzian R, et al.Effects of atmospheric and climate change at the timberline of the Central European Alps [J].Annals of Forest Science, 2009, 66(4): 402.
[4] 丛毓, 贺红士, 谷晓楠, 等.高山林线形成机理研究进展 [J].应用生态学报, 2016, 27(9): 3035-3041 [CONG Y, HE HS, GU XN, et al.Progresses of alpine treeline formation mechanism [J].Chinese Journal of Applied Ecology, 2016, 27(9): 3035-3041]
[5] 王襄平, 张玲, 方精云.中国高山林线的分布高度与气候的关系 [J].地理学报, 2004, 59(6): 871-879 [WANG XP, ZHANG L, FANG JY.Geographical differences in alpine timberline and its climatic interpretation in China.Scientia Geographica Sinica, 2004, 59(6): 871-879]
[6] 戴君虎, 崔海亭.国内外高山林线研究综述 [J].地理科学, 1999, 19(3): 243-249 [DAI JH, CUI HT.A review on the studies of alpine timberline [J].Scientia Geographica Sinica, 1999, 19(3): 243-249 ]
[7] DANBY RK, HIK DS.Variability, contingency and rapid change in recent subarctic alpine treeline dynamics [J].Journal of Ecology, 2007, 95: 352-363.
[8] KIRDYANOV AV, HAGEDORN F, KNORRE AA, et al.20th century tree-line advance and vegetation changes along an altitudinal transect in the Putorana Mountains, northern Siberia [J].Boreas, 2012, 41(1): 56-67.
[9] WONG MH, DUAN C, LONG Y, et al.How will the distribution and size of subalpine Abies georgei forest respond to climate change? A study in northwest Yunnan, China [J].Physical Geography, 2010, 31(4):319-335.
[10] CULLEN LE, STEWART GH, DUNCAN RP, et al.Disturbance and climate warming influences on New Zealand Nothofagus tree-line population dynamics [J].Journal of Ecology, 2001, 89(6): 1061-1071.
[11] LIANG E, WANG Y, ECKSTEIN D, et al.Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming [J].New Phytologist, 2011, 190(3):760-769.
[12] BATLLORI E, GUTIéRREZ E.Regional tree line dynamics in response to global change in the Pyrenees [J].Journal of Ecology, 2008, 96(6): 1275-1288.
[13] VAN BR, HANECA K, HOOGESTEGER J, et al.A century of tree line changes in sub-Arctic Sweden shows local and regional variability and only a minor influence of 20th century climate warming [J].Journal of Biogeography, 2011, 38(5): 907-921.
[14] 冉飞, 梁一鸣, 杨燕, 等.贡嘎山雅家埂峨眉冷杉林线种群的时空动态 [J].生态学报, 2014, 34(23): 6872-6878 [RAN F, LIANG YM, YANG Y, et al.Spatial-temporal dynamics of an Abies fabri population near the alpine treeline in the Yajiageng area of Gongga Mountain, China [J].Acta Ecologica Sinica, 2014, 34(23): 6872-6878]
[15] VILLALBA R, VEBLEN TT.Regional patterns of tree population age structures in northern Patagonia: climatic and disturbance influences [J].Journal of Ecology, 1997, 85(2): 113-124.
[16] WANG T, ZHANG QB, MA KP.Treeline dynamics in relation to climatic variability in the central Tianshan Mountains, northwestern China [J].Global Ecology and Biogeography, 2006, 15(4): 406-415.
[17] 王晓春, 周晓峰, 孙志虎.高山林线与气候变化关系研究进展 [J].生态学杂志, 2005, 24(3): 301-305 [WANG XC, ZHOU XF, SUN ZH.Research advances in the relationship between alpine timberline and climate change [J].Chinese Journal of Ecology, 2005, 24(3): 301-305]
[18] SHI C, MASSON-DELMOTTE V, DAUX V, et al.Unprecedented recent warming rate and temperature variability over the east Tibetan Plateau inferred from Alpine treeline dendrochronology [J].Climate Dynamics, 2015, 45(5-6): 1367-1380.
[19] GRACE J, BERNINGER F, NAGY L.Impacts of climate change on the treeline [J].Annals of Botany, 2002, 90(4): 537-544.
[20] KÖRNER C.Carbon limitation in trees [J].Journal of Ecology, 2003, 91(1): 4-17.
[21] STEVENS GC, FOX JF.The causes of treeline [J].Annual Review of Ecology and Systematics, 1991, 22: 177-191.
[22] GERMINO MJ, SMITH WK, RESOR AC.Conifer seedling distribution and survival in an alpine-treeline ecotone [J].Plant Ecology, 2002, 162(2): 157-168.
[23] LI MH, WANG SG, CHENG GW, et al.Mobile carbohydrates in Himalayan treeline trees I.Evidence for carbon gain limitation but not for growth limitation [J].Tree Physiology, 2008, 28(8):1287-1296.
[24] LI MH, XIAO WF, SHI PL, et al.Nitrogen and carbon source-sink relationships in trees at the Himalayan treelines compared with lower elevations [J].Plant, Cell and Environment, 2008, 31(10): 1377-1387.
[25] ZHU WZ, CAO M, WANG SG, et al.Seasonal dynamics of mobile carbon supply in Quercus aquifolioides at the upper elevational limit [J].PLoS ONE, 2012, 7(3): e34213.
[26] ZHU WZ, XIANG JS, WANG SG, et al.Resprouting ability and mobile carbohydrate reserves in an oak shrubland decline with increasing elevation on the eastern edge of the Qinghai-Tibet Plateau [J].Forest Ecology and Management, 2012, 278(6): 118-126.
[27] KÖRNER C.A re-assessment of high elevation treeline positions and their explanation [J].Oecotogia, 1998, 115(4): 445-459.
[28] KÖRNER C.Alpine plant life: functional plant ecology of high mountain ecosystems [M].Berlin: Springer-Verlag, 2003: 372.
[29] HOCH G, KÖRNER C.The carbon charging of pines at the climatic treeline: A global comparison [J].Oecologia, 2003, 135(1): 10-21.
[30] SHI PL, KÖRNER C, HOCH G.End of season carbon supply status of woody species near the treeline in western China [J].Basic and Applied Ecology, 2006, 7(4): 370-377.
[31] SHI PL, KÖRNER C, HOCH G.A test of the growth-limitation theory for alpine treeline formation in evergreen and deciduous taxa of the eastern Himalayas [J].Functional Ecology, 2008, 22(2): 213-220.
[32] GENET M, LI MC, LUO TX, et al.Linking carbon supply to root cell-wall chemistry and mechanics at high altitudes in Abies georgei [J].Annals of Botany, 2011, 107(2): 311-320.
[33] BANSAL S, GERMINO MJ.Carbon balance of conifer seedlings at timberline: relative changes in uptake, storage, and utilization [J].Oecologia, 2008, 158(2): 217-227.
[34] SMITH AM, STITT M.Coordination of carbon supply and plant growth [J].Plant, Cell & Environment, 2007, 30(9): 1126-1149.
[35] READER RJ.Contribution of overwintering leaves to the growth of the three broad-leaved, evergreen shrubs belonging to the Ericaceae family [J].Canadian Journal of Botany, 1978, 56(10): 1248-1260.
[36] CHAPIN FSI, SCHULZE ED, MOONEY HA.The ecology and economics of storage in plants [J].Annual Review of Ecology and Systematics, 1990, 21(1): 423-447.
[37] LI MH, HOCH G, KÖRNER C.Souee/sink removal affects mobile carbohydrates in Pinus cembra at the Swiss treeline [J].2002, Trees, 16(4-5): 331-337.
[38] LI MH, KRÄUCHI N, DOBBERTIN M.Biomass distribution of different-aged needles in young and old Pinus cembra trees at highland and lowland sites [J].Trees, 2006, 20(5): 611-618.
[39] 李迈和, Kräuchi N.全球高山林线研究现状与发展方向 [J].四川林业科技, 2005, 26(4): 36-42 [LI MH, KRÄUCHI N.The state of knowledge on alpine treeline and suggestions for future research [J].Journal of Sichuan Forestry Science and Technology, 26(4): 36-42]
[40] RICHARDSON AD.Foliar chemistry of balsam fir and red spruce in relation to elevation and the canopy light gradient in the mountains of the northeastern United States [J].Plant and Soil, 2004, 260(1-2): 291-299.
[41] CAVIERES LA, RADA F, AZOCAR A, et al.Gas exchange and low temperature resistance in two tropical high mountain tree species from the Venezuelan Andes [J].Act Oecologica, 2000, 21(3): 203-211.
[42] SUSILUOTO S, HILASVUORI E, BERNINGER F.Testing the growth limitation hypothesis for subarctic Scots pine [J].Journal of Ecology, 2010, 98(5): 1186-1195.
[43] HOCH G, POPP M, KÖRNER C.Altitudinal increase of mobile carbon pools in Pinus cembra suggests sink limitation of growth at the Swiss treeline [J].Oikos, 2002, 98(3): 361-374.
[44] HANDA T, KÖRNER C, HÄTTENSCHWILER S.A test of the treeline carbon limitation hypothesis by in situ CO2 enrichment and defoliation [J].Ecology, 2005, 86(5): 1288-1300.
[45] PIPER F, CAVIERES L, REYES-DÍAZ M, et al.Carbon sink limitation and frost tolerance control performance of the tree Kageneckia angustifolia D.Don(Rosaceae)at the treeline in central Chile [J].Plant Ecology, 2006, 185(1): 29-39.
[46] JOHNSON DM, GERMINO MJ, SMITH WK.Abiotic factors limiting photosynthesis in Abies lasiocarpa and Picea engelmannii seedlings below and above the alpine timberline [J].Tree Physiology, 2004, 24(4): 377-386.

备注/Memo

备注/Memo:
收稿日期(Received date): 2017-06-22; 改回日期(Accepted date): 2017-09-25
基金项目(Foundation item):国家重点研发计划课题(2017YFC0505104); 中国科学院成都山地所“135方向性项目(SDS-135-1707)”[National Key R&D Program of China(2017YFC0505104); the 135 Strategic Program of Institute of Mountain Hazards and Environment, CAS(SDS-135-1707)]
作者简介(Biography):朱万泽( 1965-),男,研究员,四川大竹人,主要从事森林生态研究[Zhu Wanze(1965-),male,Proffessor,born in Dazhu, Sichuan Province,research on forest ecology]E-mail: wzzhu@imde.ac.cn,Tel: 028-85238814
更新日期/Last Update: 2017-09-30