[1]孙向阳,王根绪*.贡嘎山山地暗针叶林森林生态系统水循环及其空间分异规律[J].山地学报,2017,(05):677-685.[doi:10.16089/j.cnki.1008-2786.000267]
 SUN Xiangyang,WANG Genxu.A Review of Forest Hydrology Study and Its Spatial Pattern for Dark Coniferous Forest in Gongga Mountain, Southwest China[J].Mountain Research,2017,(05):677-685.[doi:10.16089/j.cnki.1008-2786.000267]
点击复制

贡嘎山山地暗针叶林森林生态系统水循环及其空间分异规律()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年05期
页码:
677-685
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
A Review of Forest Hydrology Study and Its Spatial Pattern for Dark Coniferous Forest in Gongga Mountain, Southwest China
文章编号:
1008-2786-(2017)5-677-09
作者:
孙向阳王根绪*
中国科学院 水利部 成都山地灾害与环境研究所,四川 成都610041
Author(s):
SUN Xiangyang WANG Genxu
Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
关键词:
贡嘎山 森林生态系统 空间异质性 水循环 林龄
Keywords:
Gongga Mountain forest ecosystem spatial heterogeneity water cycle forest age
DOI:
10.16089/j.cnki.1008-2786.000267
摘要:
在全球气候变化下背景下,山区水循环加剧、水文过程和水资源变化更加复杂,客观认识变化环境下山区流域的水循环规律及其与气候、植被、土壤的相互作用机理,是全球变化及人类社会可持续发展共同面临的核心问题。本文从森林空间异质性结构对生态系统蒸散发、土壤水分、水量平衡和水碳关系的影响研究,结合国内外研究进展,系统阐述了贡嘎山高山生态系统观测试验站目前的研究工作和取得的研究结果。此外,针对复杂山地条件下生态系统水循环研究,提出了未来山地水文学重要的研究方向:系统开展土壤-植被-大气连续体(SPAC)系统下各连续体介质相关研究工作; 开展生态水文过程多尺度综合研究; 开展能够准确模拟山地水文过程的模型模拟工作。
Abstract:
The water cycle is intensified, variation of hydrological processes and water resource become more complicated in mountainous areas under global climate change.Understanding the water cycle of mountainous watersheds and its relationship with climate, vegetation and soil in the changing environment is the key issue of both global change and sustainable development of human society.Based on the study of the forest spatial heterogeneity effect on evapotranspiration, soil moisture, water balance and the coupled relationship between water and carbon in Gongga Mountain, a brief review was done to introduce the research work and scientific results in Gongga Mountain.Furthermore, three key scientific issues of mountainous hydrology under complex mountainous regions is put forward:(1)the research of vegetation-hydrology-soil continuum under SPAC system should be carried out systematically;(2)a multi-scale comprehensive research work of ecological hydrological process need to be done;(3)the hydrological model that can simulate the water cycle more accurately in complex mountainous regions still need to be developed.

参考文献/References:

[1] BARTHLOTT W, LAUER W, PLACKE A.Global distribution of species diversity in vascular plants: towards a world map of phytodiversity(Globale verteilung der artenvielfalt höherer pflanzen: vorarbeiten zu einer weltkarte der phytodiversität)[J].Erdkunde, 1996, 50(4): 317-327.
[2] VIVIROLI D, Weingartner R, Messerli B.Assessing the hydrological significance of the world's mountains [J].Mountain research and Development, 2003.23(1): 32-40.
[3] BLYTH S, et al.Mountain watch: environmental change and sustainable development in mountains [M].2002.
[4] BALDASCINI A, Perlis A, Romeo R.International Year of Mountains: concept paper.2002, Food and Agriculture Organization of the United Nations, Rome.
[5] MESSERLI B, Viviroli D, Weingartner R.Mountains of the World: Vulnerable Water Towers for the 21st Century [J].Ambio, 2004, 13(7): 29-34.
[6] 王根绪, 邓伟, 杨燕, 程根伟.山地生态学的研究进展, 重点领域与趋势[J].山地学报, 2011, 29(2):129-140.[ WANG Genxu, DENG Wei, YANG Yan, CHENG Genwei.The Advances,Priority and Developing Trend of Alpine Ecology[J].Journal of Mountain Science, 2011, 29(2):129-140]
[7] WALTHER GR.Plants in a warmer world [J].Perspectives in plant ecology, evolution and systematics, 2003, 6(3): 169-185.
[8] BAKER B, R Moseley.Advancing treeline and retreating glaciers: implications for conservation in Yunnan, PR China [J].Arctic, Antarctic, and Alpine Research, 2007, 39(2): 200-209.
[9] GOSLING WD, BUNTING MJ.A role for palaeoecology in anticipating future change in mountain regions? [J] Palaeogeography Palaeoclimatology Palaeoecology, 2007, 259(1): 1-5.
[10] KÖRNER C.The use of ‘altitude' in ecological research [J].Trends Ecol Evol, 2007, 22(11): 569-74.
[11] KÖRNER C.Why are there global gradients in species richness? Mountains might hold the answer [J].Trends in Ecology & Evolution, 2000, 15(12): 513-514.
[12] OHMURA A.Enhanced temperature variability in high-altitude climate change [J].Theoretical and Applied Climatology, 2012, 110(4): 499-508.
[13] PEPIN N, LUNDQUIST J.Temperature trends at high elevations: patterns across the globe [J].Geophysical Research Letters, 2008, 35(14).
[14] BLYTH S.Mountain watch: environmental change & sustainable developmental in mountains.2002: UNEP/Earthprint.
[15] TAGUE C, DUGGER AL.Ecohydrology and climate change in the mountains of the Western USA-A review of research and opportunities [J].Geography Compass, 2010, 4(11): 1648-1663.
[16] ANDERSON RG, GOULDEN ML.Relationships between climate, vegetation, and energy exchange across a montane gradient [J].Journal of Geophysical Research Biogeosciences, 2015, 116(G1): 944-956.
[17] SINGH VP, FREVERT DK.Mathematical models of large watershed hydrology.2002: Water Resources Publication.
[18] 张信宝, 文安邦, WALLING DE, 吕喜玺.大型水库对长江上游主要干支流河流输沙量的影响[J].泥沙研究, 2011, 32(4): 59-66.[ ZHANG Xinbao, WEN Anbang, WALLING D E, LU Xixi.Effects of large-scale hydropower reservoirs on sediment loads in Upper Yangtze River and its major tributaries[J].Journal of Sediment Research, 2011, 32(4):59-66]
[19] 沈泽昊, 方精云, 刘增力, 伍杰.贡嘎山东坡植被垂直带谱的物种多样性格局分析[J].植物生态学报, 2001, 25(6): 721-732.[SHEN Zehao, FANG Jingyun, LIU Zengli, WU Jie.Patterns of biodiversity along the vertical vegetation spectrum of the east aspect of Gongga Mountain[J].Acta Phytoecologica Sinica, 2001, 25(6): 721-732]
[20] THOMAS A.Overview of the geoecology of the Gongga Shan range, Sichuan province, China [J].Mountain Research and Development, 1999: 17-30.
[21] FERRETTI D, et al.Partitioning evapotranspiration fluxes from a Colorado grassland using stable isotopes: Seasonal variations and ecosystem implications of elevated atmospheric CO2 [J].Plant and Soil, 2003, 254(2): 291-303.
[22] MIRALLES D, et al.Magnitude and variability of land evaporation and its componentsat the global scale [J].Hydrology and Earth System Sciences, 2011, 15(3): 967-981.
[23] KUBOTA T, TSUBOYAMA Y.Estimation of evaporation rate from the forest floor using oxygen-18 and deuterium compositions of throughfall and stream water during a non-storm runoff period [J].Journal of Forest Research, 2004, 9(1): 51-59.
[24] GERRITS A, PFISTER L, SAVENIJE H.Spatial and temporal variability of canopy and forest floor interception in a beech forest [J].Hydrological Processes, 2010, 24(21): 3011-3025.
[25] 刘世荣, 温远光, 王兵等.中国森林生态系统水文生态功能规律[M].1996, 北京: 中国林业出版社.[LIU Shirong, WEN Yuanguang, WANG Bing, et al.Eco-hydrological functions of forest ecosystems in China [M].Beijing: China forestry publishing house, 1996]
[26] SAVENIJE HH.The importance of interception and why we should delete the term evapotranspiration from our vocabulary [J].Hydrological Processes, 2004, 18(8): 1507-1511.
[27] SUN X, et al.Intercepted rainfall in Abies fabri forest with different-aged stands in southwestern China [J].Turkish Journal of Agriculture and Forestry, 2013, 37(4): 495-504.
[28] BLYTH E, HARDING RJ.Methods to separate observed global evapotranspiration into the interception, transpiration and soil surface evaporation components [J].Hydrological Processes, 2011, 25(26): 4063-4068.
[29] WILSON KB, HANSON PJ, BALDOCCHI DD.Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle [J].Agricultural and Forest Meteorology, 2000, 102(2): 83-103.
[30] HERWITZ SR, SLYE RE.Three-dimensional modeling of canopy tree interception of wind-driven rainfall [J].Journal of Hydrology, 1995, 168(1-4): 205-226.
[31] TOBA T, OHTA T.An observational study of the factors that influence interception loss in boreal and temperate forests [J].Journal of Hydrology, 2005, 313(3): 208-220.
[32] MARIN CT, BOUTEN I, DEKKER S.Forest floor water dynamics and root water uptake in four forest ecosystems in northwest Amazonia [J].Journal of Hydrology, 2000, 237(3): 169-183.
[33] SHI P, et al.Water retention capacity evaluation of main forest vegetation types in the upper Yangtze basin [J].Journal of Natural Resources, 2003, 19(3): 351-360.
[34] OTIENO D, et al.Stand characteristics and water use at two elevations in a sub-tropical evergreen forest in southern China [J].Agricultural & Forest Meteorology, 2014, 194(3): 155-166.
[35] GRANIER A, BIRON P, LEMOINE D.Water balance, transpiration and canopy conductance in two beech stands [J].Agricultural and forest meteorology, 2000, 100(4): 291-308.
[36] OTIENO D, et al.Spatial heterogeneity in stand characteristics alters water use patterns of mountain forests [J].Agricultural and Forest Meteorology, 2017, 236: 78-86.
[37] 林云.亚高山森林生态系统植被空间异质性对蒸散发过程的影响[D].2011, 中国科学院研究生院 中国科学院大学.[LIN Yun.The effect of vegetation spatial heterogeneity in alpine forest ecosystem on evaporation processes [D].The graduate school of Chinese academy of sciences, 2011]
[38] KELLIHER F, et al.Partitioning evapotranspiration into tree and understorey components in two young Pinus radiata D.Don stands [J].Agricultural and Forest Meteorology, 1990, 50(3): 211-227.
[39] CHANG X, ZHAO W, HE Z.Radial pattern of sap flow and response to microclimate and soil moisture in Qinghai spruce(Picea crassifolia)in the upper Heihe River Basin of arid northwestern China [J].Agricultural and Forest Meteorology, 2014, 187: 14-21.
[40] 牛健植, 余新晓, 张志强.贡嘎山暗针叶林森林生态系统土壤水分运移特征分析[J].北京林业大学学报, 2008.30(2): 240-245.[NIU Jianzhi, YU Xinxiao, ZHANG Zhiqiang.Movement characteristics analysis of soil water flow in the dark coniferous forest ecosystem of Gongga Mountain,Sichuan Province of southwestern China[J].Journal of Beijing Forestry University, 2008, 30:240-245]
[41] WILSON KB, et al.A comparison of methods for determining forest evapotranspiration and its components: sap-flow, soil water budget, eddy covariance and catchment water balance [J].Agricultural and forest Meteorology, 2001, 106(2): 153-168.
[42] FARLEY KA, JOBBAGY EG, JACKSON RB.Effects of afforestation on water yield: a global synthesis with implications for policy [J].Global Change Biology, 2005, 11(10): 1565-1576.
[43] BROWN AE, et al.A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation [J].Journal of hydrology, 2005, 310(1): 28-61.
[44] ZHOU G, et al.Global pattern for the effect of climate and land cover on water yield [J].Nat Commun, 2015, 6: 5918.
[45] HE Z, et al.Effect of forest on annual water yield in the mountains of an arid inland river basin: a case study in the Pailugou catchment on northwestern China's Qilian Mountains [J].Hydrological Processes, 2012, 26(4): 613-621.
[46] 吕玉香, 王根绪.贡嘎山东坡不同流域河川径流特征对比分析[J].山地学报, 2008, 26(2): 196-204.[LU Yuxiang, WANG Genxu.Comparative Analysis on the Annual Runoff Characteristics of Different Basins in the Eastern Slope in Gongga Mountain[J].Journal of Mountain Science, 2008, 34(4): 196-204]
[47] WU YH, et al.Temperature and precipitation variations at two meteorological stations on eastern slope of Gongga Mountain, SW China in the past two decades [J].Journal of Mountain Science, 2013, 10(3): 370-377.
[48] 程根伟, 石培礼, 田雨.西南山地森林变化对洪水频率影响的模拟[J].山地学报, 2011, 29(5): 561-565.[CHENG Genwei, SHI Peili, TIAN Yu.Simulation of Forest Impacts to the Flood Frequency Characteristics of Mountainous River in South-western China[J].Journal of Mountain Science, 2011, 29(5): 561-565]
[49] KEENAN TF, et al.Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise [J].Nature, 2013, 499(7458): 324-327.
[50] BEER C, et al.Temporal and among-site variability of inherent water use efficiency at the ecosystem level [J].Global biogeochemical cycles, 2009, 23(2):GB2018.
[51] JACKSON RB, et al.Trading water for carbon with biological carbon sequestration [J].Science, 2005, 310(5756): 1944-1947.
[52] 王根绪, 刘国华, 沈泽昊, 王文志.山地景观生态学研究进展[J].生态学报, 2017.37(12):3967-3981.[WANG Genxu, LIU Guohua, SHEN Zehao, WANG Wenzhi.Research progress and future perspectives on the landscape ecology of mountainous areas[J].Acta Ecologica Sinica, 2017, 37(12):3967-3981]
[53] YU G, et al.Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables [J].New Phytologist, 2008, 177(4): 927-937.
[54] GOULDEN M, et al.Evapotranspiration along an elevation gradient in California's Sierra Nevada [J].Journal of Geophysical Research: Biogeosciences, 2012, 117(G3): 13.
[55] HULTINE K, MARSHALL J.Altitude trends in conifer leaf morphology and stable carbon isotope composition [J].Oecologia, 2000, 123(1): 32-40.
[56] 胡中民, 于贵瑞, 王秋凤, 赵风华.生态系统水分利用效率研究进展[J].生态学报, 2009, 29(3): 1498-1507.[HU Zhongmin, YU Guirui, WANG Qiufeng, ZHAO Fenghua.Ecosystem level water use efficiency:A review[J].Acta Ecologica Sinica, 2009, 29(3): 1498-1507]
[57] FARQUHAR GD, O'LEARY MH, BERRY JA.On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves [J].Functional Plant Biology, 1982, 9(2): 121-137.
[58] VITOUSEK PM, FIELD CB, MATSON PA.Variation in foliar δ13C in Hawaiian Metrosideros polymorpha: a case of internal resistance? [J] Oecologia, 1990, 84(3): 362-370.
[59] SLEEN P V D, GROENENDIJK P, VLAM M, et al.No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased [J].Nature geoscience, 2015, 8(1): 24-28.
[60] FRANK D, et al.Water-use efficiency and transpiration across European forests during the Anthropocene [J].Nature climate change, 2015, 5(6): 579-583.
[61] VAN PK, LEAVITT SW, BETANCOURT JL.Leaf delta 13C variability with elevation, slope aspect, and precipitation in the southwest United States [J].Oecologia, 2002, 132(3): 332-343.
[62] TAYLOR SE, SEXTON OJ.Some implications of leaf tearing in Musaceae [J].Ecology, 1972, 53(1): 143-149.
[63] PANEK JA, WARING RH.Carbon isotope variation in Douglas-fir foliage: improving the δ13C-climate relationship [J].Tree Physiology, 1995, 15(10): 657-663.
[64] COCHARD H, et al.Temperature effects on hydraulic conductance and water relations of Quercus robur L [J].Journal of Experimental Botany, 2000, 51(348): 1255-1259.
[65] SMITH W, GELLER G.Plant transpiration at high elevations: theory, field measurements, and comparisons with desert plants [J].Oecologia, 1979, 41(1): 109-122.
[66] JASECHKO S, et al.Terrestrial water fluxes dominated by transpiration [J].Nature, 2013, 496(7445): 347-50.
[67] COENDERSGERRITS AMJ, et al.Uncertainties in transpiration estimates [J].Nature, 2014, 506(7487).
[68] BLÖSCHL G, SIVAPALAN M.Scale issues in hydrological modelling: a review [J].Hydrological processes, 1995, 9(3-4): 251-290.
[69] LIN Y S, et al.Optimal stomatal behaviour around the world [J].Nature Climate Change, 2015, 5(5): 459-464.
[70] D'ALMEIDA C, et al.The effects of deforestation on the hydrological cycle in Amazonia: a review on scale and resolution [J].International Journal of Climatology, 2007, 27(5): 633-647.
[71] ELLISON D, FUTTER MN, BISHOP K.On the forest cover-water yield debate: from demand to supply-side thinking [J].Global Change Biology, 2012, 18(3): 806-820.
[72] WEILER M, MCDONNELL J.Virtual experiments: a new approach for improving process conceptualization in hillslope hydrology [J].Journal of Hydrology, 2004, 285(1): 3-18.
[73] DELLA C, et al.Modelling changes in grassland hydrological cycling along an elevational gradient in the Alps [J].Ecohydrology, 2014, 7(6): 1453-1473.
[74] FATICHI S, IVANOV V, CAPORALI E.A mechanistic ecohydrological model to investigate complex interactions in cold and warm water-controlled environments: 1.Theoretical framework and plot-scale analysis [J].Journal of Advances in Modeling Earth Systems, 2012, 4: M05002.

相似文献/References:

[1]周俊,吴艳宏.贡嘎山海螺沟水化学主离子特征及其控制因素[J].山地学报,2012,(03):378.
 ZHOU Jun,WU Yanhong.Major Ion Chemistry of Waters in Hailuogou Catchment and the Possible Controls[J].Mountain Research,2012,(05):378.
[2]吕儒仁.贡嘎山东坡和北坡的山地灾害[J].山地学报,1991,(02):131.
[3]吕儒仁.一场典型的冰雪雨水泥石流过程[J].山地学报,1992,(02):89.
[4]李逊,熊尚发.贡嘎山海螺沟冰川退却迹地植被原生演替[J].山地学报,1995,(02):109.
[5]程根伟.贡嘎山极高山区的降水分布特征探讨[J].山地学报,1996,(03):177.
[6]罗辑.贡嘎山东坡植被原生演替的种间协变[J].山地学报,1996,(04):223.
[7]罗辑,赵义海,李林峰.贡嘎山东坡峨眉冷杉林C循环的初步研究[J].山地学报,1999,(03):59.
[8]杨清伟,程根伟,罗辑,等.贡嘎山东坡亚高山森林系统植被光合作用——双裂蟹甲草(Cacalia davidii)净光合速率对生态因子的响应[J].山地学报,2001,(02):115.
[9]钟祥浩,罗辑.贡嘎山山地暗针叶林带自然与退化生态系统生态功能特征[J].山地学报,2001,(03):201.
[10]周杨明,程根伟,杨清伟.贡嘎山东坡亚高山森林区蒸散力的估算[J].山地学报,2002,(02):135.

备注/Memo

备注/Memo:
收稿日期(Received date):2017-06-20; 改回日期(Accepted date): 2017-09-20
基金项目(Foundation item):中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC006); 国家自然科学青年基金(41401044)[key Research Projects of Frontier Sciences(CASQYZDJ-SSW-DQC006); National Natural Sciences Foundation of China(41401044)]
作者简介(Biography):孙向阳(1985-),男,汉族,吉林榆树人,助理研究员,山地生态水文研究[Sun Xiangyang(1985-),male,born in Yushu,Jilin Province, researchassistant,research on mountainous ecohydrology ] E-mail: sunxiangyang@imde.ac.cn
*通讯作者(Corresponding author):王根绪(1965-),男,博士,研究员,主要研究方向:生态水文学,区域环境与变化[Wang Genxu(1965-),male,Ph.D,Professor,specialized in ecohydrology] E-mail: wanggx@imde.ac.cn
更新日期/Last Update: 2017-09-30