[1]孙宏洋,等.贡嘎山酸性土壤微生物量磷紧密关联碳酸氢钠提取态有机磷[J].山地学报,2017,(05):709-716.[doi:10.16089/j.cnki.1008-2786.000270]
 SUN Hongyang,WU Yanhong,LI Na,et al.Microbial Biomass Phosphorus is Closely Linked to Sodium Bicarbonate Extractable Organic P in Acid Soil of Mt.Gongga[J].Mountain Research,2017,(05):709-716.[doi:10.16089/j.cnki.1008-2786.000270]
点击复制

贡嘎山酸性土壤微生物量磷紧密关联碳酸氢钠提取态有机磷()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年05期
页码:
709-716
栏目:
出版日期:
2017-09-30

文章信息/Info

Title:
Microbial Biomass Phosphorus is Closely Linked to Sodium Bicarbonate Extractable Organic P in Acid Soil of Mt.Gongga
文章编号:
1008-2786-(2017)5-709-08
作者:
孙宏洋1 2吴艳宏1 2*李 娜3周 俊1 2邴海健1 2
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041;
2.中国科学院山地表生过程与生态调控重点实验室,成都 610041;
3.中国科学院成都生物研究所,成都 610041
Author(s):
SUN Hongyang12 WU Yanhong12 LI Na ZHOU Jun12 BING Haijian12
1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610041, China;
2.Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Resources, Chengdu 610041, China;
3.Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
关键词:
有效磷 Hedley磷连续提取法 微生物脂肪酸 海拔
Keywords:
available P Hedley sequential-P-fractionation microbial lipids elevation
分类号:
S154
DOI:
10.16089/j.cnki.1008-2786.000270
文献标志码:
A
摘要:
有效磷是土壤中最重要的磷组分,被广泛用于评估各种生态系统的土壤磷营养。然而,很少有研究基于野外数据评估有效磷的来源。本研究通过野外调查和室内试验,展示和评估了微生物量磷(MBP)和微生物群落对贡嘎山酸性土中有效磷组分的关联性。结果发现,微生物功能组脂肪酸显著解释有效磷变异性,尤其细菌脂肪酸强烈关联有效磷。与Hedley磷连续提取法中其他有效磷相比,仅碳酸氢钠提取态有机磷(NaHCO3-Po)强烈关联MBP。本研究的数据分析、实验结果和以往的研究结果证明MBP与NaHCO3-Po之间的这种关联性是直接的:微生物死亡裂解释放有效磷是导致这种联系的主要原因。这些结果揭示了微生物量磷测定方法与Hedley磷连续提取法测定方法的关联性:酸性土中MBP是Hedley磷连续提取法中NaHCO3-Po的主要来源,也强调了Hedley磷连续提取法在评估微生物对土壤磷有效性作用中的重要参考性。
Abstract:
The available phosphorus(P)is the most important component of soil P, which is widely used for assessing the nutrition of soil P in various ecosystems.However, few studies had been done for evaluation of its source in terms of field observation.Through field investigation and laboratory test, this study presented and evaluated the relation between available P fractions and soil microbial biomass P(MBP)in acidic soils of Mt.Gongga.It showed that microbial functional group lipids could be used to explain the variations of available P profiles across all plots.More importantly, it exhibited a close connection between bacterial lipids and available P.Compared with other available P fractions determined by modified Hedley sequential method, only the sodium bicarbonate extractable organic P(NaHCO3-Po)strongly related to MBP.Previous researches and our analysis can prove that the relation between MBP and NaHCO3-Po was direct: microbial cells cracking was the main reason for the relation.The results also revealed the relation between two methods(i.e., MBP determination method and Hedley sequential-P-fractionation method): the MBP was a major component of NaHCO3-Po through Hedley sequential-P-fractionation method in the acid soil.It also highlighted reference values of Hedley sequential-P-fractionation method in assessing the role of soil microorganism in bioavailability of P.

参考文献/References:

[1] WU Y, ZHOU J, BING H et al.Rapid loss of phosphorus during early pedogenesis along a glacier retreat choronosequence, Gongga Mountain(SW China)[J].PEERJ, 2015, 3.
[2] YANG X, POST W M.Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method [J].Biogeosciences, 2011, 8: 2907-2916.
[3] VITOUSEK P M, PORDER S, HOULTON B Z et al.Terrestrial phosphorus limitation: mechanisms, implications, and nitrogen-phosphorus interactions [J].Ecological Applications, 2010, 20: 5-15.
[4] CROSS A F, SCHLESINGER W H.A literature-review and evaluation of the Hedley fractionation-applications to the biogeochemical cycle of soil-phosphorus in natural ecosystems [J].Geoderma, 1995, 64: 197-214.
[5] FROSSARD E, CONDRON L M, OBERSON A et al.Processes governing phosphorus availability in temperate soils [J].Journal of Environmental Quality, 2000, 29: 15-23.
[6] GIESLER R, SATOH F, ILSTEDT U et al.Microbially available phosphorus in boreal forests: Effects of aluminum and iron accumulation in the humus layer [J].Ecosystems, 2004, 7: 208-217.
[7] REDEL Y, RUBIO R, GODOY R et al.Phosphorus fractions and phosphatase activity in an Andisol under different forest ecosystems [J].Geoderma, 2008, 145: 216-221.
[8] SMITS M M, JOHANSSON L, WALLANDER H.Soil fungi appear to have a retarding rather than a stimulating role on soil apatite weathering [J].Plant and Soil, 2014, 385:217-228.
[9] VINCENT A G, SUNDQVIST M K, WARDLE D A et al.Bioavailable Soil Phosphorus Decreases with Increasing Elevation in a Subarctic Tundra Landscape [J].Plos One, 2014, 9.
[10] MORAIS F A, GATIBONI L C.Phosphorus availability and microbial immobilization in a Nitisol with the application of mineral and organo-mineral fertilizers [J].Anais Da Academia Brasileira De Ciencias, 2015, 87: 2289-2299.
[11] COSTA M G, GAMA-RODRIGUES A C, DE MORAES GONCALVES J L et al.Labile and Non-Labile Fractions of Phosphorus and Its Transformations in Soil under Eucalyptus Plantations, Brazil [J].Forests, 2016, 7.
[12] OEHL F, OBERSON A, PROBST M et al.Kinetics of microbial phosphorus uptake in cultivated soils [J].Biology and Fertility of Soils, 2001, 34: 31-41.
[13] GEORGE T S, TURNER B L, GREGORY P J et al.Depletion of organic phosphorus from Oxisols in relation to phosphatase activities in the rhizosphere [J].European Journal of Soil Science, 2006, 57: 47-57.
[14] FERREIRA A S, DOS SANTOS M A, CORREA G F.Soil microbial response to glucose and phosphorus addition under agricultural systems in the Brazilian Cerrado [J].Anais Da Academia Brasileira De Ciencias, 2013, 85: 395-403.
[15] SHI Y, LALANDE R, HAMEL C et al.Seasonal variation of microbial biomass, activity, and community structure in soil under different tillage and phosphorus management practices [J].Biology and Fertility of Soils, 2013, 49: 803-818.
[16] TAN H, BARRET M, MOOIJ M J et al.Long-term phosphorus fertilisation increased the diversity of the total bacterial community and the phoD phosphorus mineraliser group in pasture soils [J].Biology and Fertility of Soils, 2013, 49: 661-672.
[17] THIRUKKUMARAN C M, PARKINSON D.Microbial activity, nutrient dynamics and litter decomposition in a Canadian Rocky Mountain pine forest as affected by N and P fertilizers [J].Forest Ecology and Management, 2002, 159: 187-201.
[18] GROFFMAN P M, FISK M C.Phosphate additions have no effect on microbial biomass and activity in a northern hardwood forest [J].Soil Biology & Biochemistry, 2011, 43: 2441-2449.
[19] DEFOREST J L, SMEMO K A, BURKE D J et al.Soil microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests [J].Biogeochemistry, 2012, 109: 189-202.
[20] TIESSEN H, MOIR J.Characterization of available P by sequential extraction.In: Carter M(ed)Soil sampling and methods of analysis.Canadian Society of Soil Science, Lewis Publishers, Boca Raton, 1993: 75-86.
[21] BROOKES P C, POWLSON D S, JENKINSON D S.Measurement of Microbial Biomass Phosphorus in Soil [J].Soil Biology & Biochemistry, 1982, 14: 319-329.
[22] LUKITO H P, KOUNO K, ANDO T.Phosphorus requirements of microbial biomass in a regosol and an andosol [J].Soil Biology & Biochemistry, 1998, 30: 865-872.
[23] WU Y P, DING N, WANG G et al.Effects of different soil weights, storage times and extraction methods on soil phospholipid fatty acid analyses [J].Geoderma, 2009, 150: 171-178.
[24] FEDERLE T.Microbial distribution in the soil-new techniques.In: Megusar F & Gantar M(eds)Perspectives in Microbial Ecology.Slovene Society for Microbiology, Ljubljana, Slovenia, 1986: 493-498.
[25] FROSTEGARD A, BAATH E.The use of phospholipid fatty acid analysis to estimate bacterial and fungal biomass in soil [J].Biology and Fertility of Soils, 1996, 22: 59-65.
[26] TUNLID A, HOITINK H A J, LOW C, et al.Characterization of Bacteria That Suppress Rhizoctonia Damping-Off in Bark Compost Media by Analysis of Fatty-Acid Biomarkers [J].Appl Environ Microb, 1989, 55: 1368-1374.
[27] BERTRAM J E, ORWIN K H, CLOUGH T J, et al.Effect of soil moisture and bovine urine on microbial stress [J].Pedobiologia, 2012, 55: 211-218.
[28] LIANG C, DUNCAN D S, BALSER T C et al.Soil microbial residue storage linked to soil legacy under biofuel cropping systems in southern Wisconsin, USA [J].Soil Biology & Biochemistry, 2013, 57: 939-942.
[29] O'LEARY W, WILKINSON S.Gram-positive bacteria.In: Ratledge C & Wilkinson S(eds)Microbial Lipids.1st edn.London: Academic Press, 1988: 117-202.
[30] ZOGG G P, ZAK D R, RINGELBERG D B et al.Compositional and functional shifts in microbial communities due to soil warming [J].Soil Science Society of America Journal, 1997, 61: 475-481.
[31] DJUKIC I, ZEHETNER F, MENTLER A et al.Microbial community composition and activity in different Alpine vegetation zones [J].Soil Biology & Biochemistry, 2010, 42: 155-161.
[32] KOURTEV P S, EHRENFELD J G, HAGGBLOM M.Exotic plant species alter the microbial community structure and function in the soil.Ecology, 2002, 83: 3152-3166.
[33] [鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:106-108, 147-150] LU Rukun.Methods for agricultural chemical analysis of soil[M].Beijing: China Agricultural Science and Technology Press, 2000: 106-108, 147-150.
[34] TER BRAAK C J F(1998).CANOCO Reference Manual and User's Guide to CANOCO for Windows: Software for Canonical Community Ordination(version 4).Microcomputer Power, Ithica, NY.
[35] BüNEMANN E K, PRUSISZ B, EHLERS K.Characterization of Phosphorus Forms in Soil Microorganisms.In: Bünemann EK, Oberson A, Frossard E(Editors), Phosphorus in Action: Biological Processes in Soil Phosphorus Cycling.Springer, Berlin/Heidelberg, 2011: 37-57.
[36] TURNER B L, LAMBERS H, CONDRON L M et al.Soil microbial biomass and the fate of phosphorus during long-term ecosystem development [J].Plant and Soil, 2013, 367: 225-234.
[37] ANDERSON B H, MAGDOFF F R.Autoclaving soil samples affects algal-available phosphorus [J].Journal of Environmental Quality, 2005, 34: 1958-1963.
[38] LOUCHE J, ALI M A, CLOUTIER-HURTEAU B et al.Efficiency of acid phosphatases secreted from the ectomycorrhizal fungus Hebeloma cylindrosporum to hydrolyse organic phosphorus in podzols [J].FEMS Microbiology Ecology, 2010, 73: 323-335.
[39] TURNER B L, HAYGARTH P M.Changes in bicarbonate-extractable inorganic and organic phosphorus by drying pasture soils [J].Soil Science Society of America Journal, 2003, 67: 344-350.
[40] TURNER B L, HAYGARTH P M.Biogeochemistry-Phosphorus solubilization in rewetted soils [J].Nature, 2001, 411: 258-258.
[41] TURNER B L, DRIESSEN J P, HAYGARTH P M et al.Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils [J].Soil Biology & Biochemistry, 2003, 35:187-189.
[42] MALIK Y S, GOYAL S M.Virucidal efficacy of sodium bicarbonate on a food contact surface against feline calicivirus, a norovirus surrogate [J].International Journal of Food Microbiology, 2006, 109: 160-163.
[43] PANT H K, REDDY K R.Phosphorus sorption characteristics of estuarine sediments under different redox conditions [J].Journal of Environmental Quality, 2001, 30: 1474-1480.
[44] LIU Q, LOGANATHAN P, HEDLEY M J et al.Root processes influencing phosphorus availability in volcanic soils under young Pinus radiata plantations [J].Canadian Journal of Forest Research-Revue Canadienne De Recherche Forestiere, 2006, 36: 1913-1920.
[45] XU G, SHAO H B, XURONGFU et al.The role of root-released organic acids and anions in phosphorus transformations in a sandy loam soil from Yantai, China [J].African Journal of Microbiology Research, 2012, 6: 674-679.
[46] GERARD F.Clay minerals, iron/aluminum oxides, and their contribution to phosphate sorption in soils-A myth revisited [J].Geoderma, 2016, 262: 213-226.

备注/Memo

备注/Memo:
收稿日期(Received date):2017-06-25; 改回日期(Accepted date):2017-09-27
基金项目(Foundation item):国家自然科学基金项目(41501281); 国家自然科学基金重点项目(41630751); 中国科学院山地表生过程与生态调控重点实验室开放基金[National Natural Science Foundation of China(41501281; 41630751); Open Foundation of Key Laboratory of Mountain Surface Process and Ecological Regulation, Chinese Academy of Sciences]
作者简介(Biography):孙宏洋(1986-),男,四川峨眉人,博士,助研,主要研究方向为微生物地球化学 [Sun Hongyang(1986-), male, born in Emei, Sichuan province, Ph.D., research assistant, research on microbial geochemistry] E-mail:sunhongyang@imde.ac.cn
*通讯作者(Corresponding author):吴艳宏(1969-),男,博士,研究员,研究方向:环境地球化学 [WU Yanhong(1969-), male, Ph.D., professor, specialized in environmental geochemistry] E-mail: yanhong_wu@yeah.net.
更新日期/Last Update: 2017-09-30