[1]刘运通,金艳强,李 敬,等.元江干热河谷土壤温湿度变化及其对干旱的响应[J].山地学报,2017,(06):790-798.[doi:10.16089/j.cnki.1008-2786.000279]
 LIU Yuntong,JIN Yanqiang,LI Jing,et al.Variation Characteristic of Soil Moisture and Soil Temperaturein Yuanjiang Savanna Ecosystem and Its Response to Drought[J].Mountain Research,2017,(06):790-798.[doi:10.16089/j.cnki.1008-2786.000279]
点击复制

元江干热河谷土壤温湿度变化及其对干旱的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2017年06期
页码:
790-798
栏目:
山地生态与环境
出版日期:
2017-11-30

文章信息/Info

Title:
Variation Characteristic of Soil Moisture and Soil Temperature in Yuanjiang Savanna Ecosystem and Its Response to Drought
文章编号:
1008-2786-(2017)6-790-09
作者:
刘运通1金艳强14李 敬14张一平12*李培广13
1.中国科学院西双版纳热带植物园 热带森林生态学重点实验室,昆明 650223; 2.中国科学院哀牢山亚热带森林生态系统研究站,云南 景东 676209; 3.中国科学院西双版纳热带植物园元江干热河谷生态系统生态站,云南 元江 653300; 4.中国科学院大学,北京100049
Author(s):
LIU Yuntong1 JIN Yanqiang14 LI Jing14 ZHANG Yiping12* LI Peiguang13
1.Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming 650223, China; 2.Ailaoshan Station for Subtropical Forest Ecosystem Studies, Jingdong 676209, Yunnan, China; 3.Yuanjiang Research Station for Savanna Ecosystems, Yuanjiang 653300, Yunnan, China; 4.University of Chinese Academy of Sciences, Beijing 100049, China
关键词:
干旱 截雨试验 土壤温度 土壤湿度
Keywords:
drought rainfall exclusion experiment soil temperature soil mosture
分类号:
P467
DOI:
10.16089/j.cnki.1008-2786.000279
文献标志码:
A
摘要:
随着全球变暖,干旱发生的频率和强度不断上升,但生态系统对干旱的响应机理尚不清楚。为把握生态系统整体对干旱的响应,以元江稀树冠草丛生态系统为研究对象,搭建了冠层上方的整体截雨试验平台,共设4个处理:空白(CK),截雨30%(PE3),截雨50%(PE5)和截雨70%(PE7),每个处理3个重复。主要通过土壤水分、土壤温度对不同截雨处理的响应评估该控雨平台的控水效应,为研究稀树冠草丛生态系统整体对干旱的响应提供试验基础。结果表明:元江年均气温逐年升高(P<0.05),降雨逐年降低(P>0.05),年均最高气温上升最快(P<0.05); CK、PE3、PE5和PE7处理下土壤10cm水分含量年均值分别为17.2%、12.9%、10.3%和9.1%,各处理土壤10 cm水分含量在干季、雨季和全年尺度上均差异极显著(P<0.01); 10 cm土壤温度在各截雨处理下依次升高分别为25.1 ℃(CK)、25.2 ℃(PE3)、25.8 ℃(PE5)和26.5 ℃(PE7),且无论在干季、雨季还是全年尺度上PE7处理与PE3和CK处理差异显著(P<0.05),其它处理间无差异(P>0.05); 该冠层上方截雨平台对生态系统整体控水的控水效果(EPE, 70.0%~84.0%)优于于国内外冠层下方控穿透雨试验平台(EPE≤35.0%)。该平台为研究生态系统整体对干旱响应提供了良好的方法。
Abstract:
Although the frequency and intensity of drought has been increased with global warming, the response mechanism of ecosystem to drought remains unknown.In order to investigate the global responses of the eco-system to drought, the crown canopy ecosystem in Yuanjiang savanna was targeted as a case study.A integrated rainfall interception experiment platform was designed and placed over the crown for performance testing at 4 selected scenarios: blank(CK), 30% interception(PE3), 50% interception(PE5)and 70% interception(PE7), each of them with 3 repeated trials.By examinations of the responses of soil moisture and temperature to the given rainfall under each of the four interception conditions, an evaluation was performed on the water control effects of the platform, whereby it provide new insight into the response of canopy ecosystem in savanna to drought.Results found that annual temperature average in Yuanjiang had increased for years(P<0.05)along with a gradual decrease in precipitation(P>0.05)and the annual maximum temperature disclosed the fastest ascending rate(P<0.05).In the four testing scenarios of CK, PE3, PE5 and PE7, the annual average of soil moisture contents at 10cm were 17.2%,12.9%,10.3% and 9.1%, respecitively, and they presented significant difference in dry season, rainy season and a year basis(P<0.01).Soil temperature at 10cm deep in each of the four scenarios increased accordingly at 25.1 ℃(CK),25.2 ℃(PE3),25.8 ℃(PE5)and 26.5 ℃(PE7).Regardless of the dry season, rainy season or a whole year, in PE7 the temperature of soil was found an great difference as compared with values to be observed in PE3, CK(P<0.05), whereas at other scenarios they exhibited less.The integrated water controlling efficiency achieved by rainfall interception platform installed above the crown(EPE, 70%~84%)was proved to be better than those of the regular platforms to be seated under crown canopy(EPE≤35.0%).In conclusion, our suggested platform could provide an acceptable approach to investigation of the response of entire ecosystem to drought.

参考文献/References:

[1] 邱海军,曹明明,郝俊卿,等.1950—2010 年中国干旱灾情频率-规模关系分析 [J].地理科学,2013, 33(5):576-580 [QIU Haijun, CAO Mingming, HAO Junqing, et al.Relationship between frequency and magnitude of drought damage in China in 1950-2010 [J].Scientia Geographica Sinica, 2013, 33(5): 576-580]
[2] 国家发展和改革委员会.中华人民共和国气候变化第二次国家信息通报 [M].北京:中国计划出版社,2013,91-96.[National Development and Reform Commission.Peoples Republic of China second national communication on climate change [M].Beijing: China planning press, 2013, 91-96]
[3] 彭贵芬,刘盈曦.云南降水多周期叠加与连续特大气象干旱关系及趋势预估研究 [J].云南大学学报:自然科学版,2014,36(4):530-537 [PENG Guifen, LIU Yingxi.A study on relationship between annual precipitation multi-cycle superposition and continuous severe drought in Yunnan with trend prediction [J].Journal of Yunnan University: Natural Sciences Edition, 2014, 36(4): 530-537]
[4] 陶云,张万诚,段长春,等.云南2009—2012年4年连旱的气候成因研究 [J].云南大学学报:自然科学版,2014,36(6):866-874 [TAO Yun, ZHANG Wancheng, DUAN Changchun, et al.Climate causes of continuous drought over Yunnan Province from 2009 to 2012 [J].Journal of Yunnan University: Natural Sciences Edition, 2014, 36(6): 866-874]
[5] 琚建华,吕俊梅,谢国清,等.MJO和AO持续异常对云南干旱的影响研究 [J].干旱气象,2011,29(4):401-406 [JU Jianhua, LV Junmei, XIE Guoqing, et al.Studies on the influences of persistent anomalies of MJO and AO on drought appeared in Yunnan [J].Journal of Arid Meteorology, 2011, 29(4): 401-406]
[6] 杨兆平,常禹.我国西南主要干旱河谷生态及其研究进展 [J].干旱地区农业研究,2007,25(4):90-93 [YANG Zhaoping, ChANG Yu.Study on influence of arid climate change to drought disaster in Gansu and technique of preventing drought and reducing disaster [J].Agricultural Research in the Arid Areas, 2007, 25(4): 90-93]
[7] 孙辉,唐亚,黄雪菊,等.横断山区干旱河谷研究现状和发展方向 [J].世界科技研究与发展,2005,27(3):54-61 [SUN Hui, TANG Ya, HUANG Xueju, et al.Recent situations and its R&D of dry valleys in the Hengduan Mountains of SW China [J].World Sci-tech R & D.2005, 27(3): 54-61]
[8] FISHER R A, WILLIAMS M, COSTA A L D, et al.The response of an Eastern Amazonian rain forest to drought stress: results and modeling analyses from a throughfall exclusion experiment [J].Global Change Biology, 2007, 13: 2361-2378
[9] NEPPSTAD D C, TOHVER I M, RAY D, et al.Mortality of large trees and lianas following experimental drought in an amazon forest [J].Ecology, 2007, 88(9): 2259-2269
[10] HOFFMANN W A, MARCHIN R M, ABIT P, et al.Hydraulic failure and tree dieback are associated with high wood density in a temperate forest under extreme drought [J].Global Change Biology, 2011, 17: 2731–2742.
[11] UNGERA S, MáGUAS C, PEREIRA J S, et al.Interpreting post-drought rewetting effects on soil and ecosystem carbon dynamics in a Mediterranean oak savannah [J].Agricultural and Forest Meteorology, 2012,(154-155): 9-18
[12] WOOD T E, DETTO M, SILVER W L.Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest [J].PLoS ONE, 2013, 8(12): e80965
[13] BALDOCCHI D D, XU L K, KIANG N.How plant fuctional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak-grass savanna and an annual grassland [J].Agricultural and Forest Meteorology, 2004, 123:13-39
[14] GATTI L V, GLOOR M, MILLER J B, et al.Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements [J].Nature, 2014, 506(6): 76-80
[15] NAJERA N H, FEST B, LIVESLEY S J, et al.Reduced throughfall decreases autotrophic respiration, but not heterotrophic respiration in a dry temperate broadleaved evergreen forest [J].Agricultural and forest meteorology, 2015, 66-77.
[16] 李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响[J].西北植物学报,2006,26(2):266-275 [LI Wei, CAO Kunfang.Effects of drought stress on photosynthetic characteristics and chlorophyll fluorescence parameters in seedlings of terminthia paniculata grown under different light level [J].Acta Botanica Boreali-Occidentalia Sinica, 2006, 26(2): 266-275]
[17] ZHANG S B, HUANG W, ZHANG J L, et al.Differential responses of photosystems I and II to seasonal drought in two Ficus species [J].Acta Oecologica, 2016, 73: 53-60
[18] 程徐冰,吴军,韩士杰,等.减少降水对长白山蒙古栎叶片生理生态特性的影响 [J].生态学杂志,2011, 30(9):1908-1914 [CHENG Xubing, WU Jun, HAN Shijie, et al.Effects of decreased rainfall on Quercus Mongolia leaf eco-physiological characteristics [J].Chinese Journal of Ecology, 2011, 30(9): 1908-1914]
[19] JIANG H, DENG Q, ZHOU G, Et al.Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China [J].Biogeosciences, 2013, 10: 3963-3982
[20] MOSER G, SCHULDT B, HERTEL D, et al.Replicated throughfall exclusion experiment in an Indonesian perhumid rainforest: wood production, litterfall and fine root growth under simulated drought [J].Global Change Biology, 2014, 20: 1481-1497
[21] 喻赞仁.元江河谷热带坝区自然优势及其开发[J].自然资源学报, 1992,7(3):235-239 [YU Zanren.On the natural superiority and exploitation of the tropical level land of the Yuanjiang river valley of Yunnan Province [J].Journal of Natural Resources, 1992, 7(3): 235-239]
[22] IPCC.Summary for policymakers//Climate Change 2013: the physical science basis.Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change [M].Cambridge & New York: Cambridge University Press, 2013, 5-8
[23] 陈铁喜,陈星.近50年中国气温日较差的变化趋势分析[J].高原气象,2007,26(1):150-157 [CHEN Tiexi, CHEN Xing.Variation of diurnal temperature range in China in the past 50 years [J].Plateau Meteorology, 2007, 26(1): 150-157]
[24] 董丹宏,黄刚.中国最高、最低温度及日较差在海拔高度上变化的初步分析[J].大气科学,2015,39(5):1011-1024 [HUANG Danhong, HUANG Gang.Relationship between altitude and variation characteristics of the maximum temperature, minimum temperature, and diurnal temperature range in China [J].Chinese Journal of Atmospheric Sciences, 39(5): 1011-1024]
[25] 金振洲.云南元江干热河谷半萨王纳植被的植物群落学研究 [J].广西植物,1999,19(4):289-302 [JIN Zhenzhou.A phytosociological study on the semi-savanna vegetation in the dry-hot valleys of Yuanjiang River, Yunnan [J].Guihaia, 1999, 19(4): 289-302]
[26] ZHANG Jiaolin, ZHU Junjie, CAO Kunfang.Seasonal variation in photosynthesis in six woody species with different leaf phenology in a valley savanna in southwestern China [J].Tress, 2007, 21: 631-643
[27] 费学海,张一平,宋清海,等.元江干热河谷太阳辐射各分量及反照率变化特征 [J],北京林业大学学报,2016,38(3):1-10 [FEI Xuehai, ZHANG Yiping, SONG Qinghai, et al.Characteristics of solar radiation distribution and albedo in Yuanjiang dry-hot valley, Southwest China [J].Journal of Beijing Forestry University, 2016, 38(3): 1-10]
[28] Zhang X, Zhang Y P, Sha L Q, et al.Effects of continuous drought stress on soil respiration in a tropical rainforest in southwest China [J].Plant and Soil, 2015, 394(1): 343-353

相似文献/References:

[1]杜华明,延军平.西秦岭地区气候变化特征与干旱灾害趋势[J].山地学报,2014,(01):58.
 DU Huaming,YAN Junping.Characteristics of Climatic Change and Trend of Aridity in West Qinling[J].Mountain Research,2014,(06):58.
[2]赵志龙,张镱锂,刘峰贵,等.青藏高原农牧区干旱灾害风险分析[J].山地学报,2013,(06):672.
 ZHAO Zhilong,ZHANG Yili,LIU Fenggui,et al.Drought Disaster Risk Analysis of Tibetan Plateau[J].Mountain Research,2013,(06):672.
[3]侯迎,王乃昂,张学敏,等.基于树轮资料重建祁连山东段冷龙岭1848年以来的干湿变化[J].山地学报,2011,(01):12.
 HOU Ying,WANG Naiang,ZHENG Xuemin,et al.Precipitation Reconstruction from Tree Ring Width over the Eastern Part of the Qilian Mountains, Northwestern China[J].Mountain Research,2011,(06):12.
[4]何娇楠,李运刚*,李 雪,等.云南省1961—2012年干旱时空变化特征[J].山地学报,2016,(01):19.[doi:10.16089/j.cnki.1008-2786.000096]
 HE Jiaonan,LI Yungang,LI Xue,et al.Temporal and Spatial Characteristics of Droughts over Yunnan Province During 1961—2012 HE Jiaonan, LI Yungang, LI Xue, HUANG Jiangcheng[J].Mountain Research,2016,(06):19.[doi:10.16089/j.cnki.1008-2786.000096]
[5]马志婷,武志涛*,卫 洁.京津风沙源区干旱时空特征及对植被变化的影响[J].山地学报,2018,(04):536.[doi:10.16089/j.cnki.1008-2786.000350]
 MA Zhiting,WU Zhitao*,WEI Jie.Spatial and Temporal Variations of Droughts over the Beijing-Tianjin Sand Source Region and Their Effects on Vegetation Change[J].Mountain Research,2018,(06):536.[doi:10.16089/j.cnki.1008-2786.000350]
[6]李红梅 周秉荣*,申红艳,肖宏斌.青海高原干旱时空分异特征及发生风险研究[J].山地学报,2019,(02):230.[doi:10.16089/j.cnki.1008-2786.000417]
 LI Hongmei,ZHOU Bingrong*,SHEN Hongyan XIAO Hongbing.Research on Temporal and Spatial Differentiation and Occurrence Risks of Drought in Qinghai, China[J].Mountain Research,2019,(06):230.[doi:10.16089/j.cnki.1008-2786.000417]

备注/Memo

备注/Memo:
收稿日期(Received date):2016-5-24; 改回日期(Accepted date):2017-08-14
基金项目(Foundation item):国家自然科学基金-青年基金项目(41405143); 国家自然科学基金-云南省基金联合项目(U1202234); 云南省科技厅面上项目(2015FB186); 中国科学院战略性先导专项(XDA05050601; XDA05050206)[National Nature Science Foundation of China(41405143; U1202234); Natural Science Foundation of Yunnan Province(2015FB186); The “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA05050601; XDA05050206 ).]
作者简介(Biography):刘运通(1979-),男,河北沧州人,助理研究员,主要从事温室气体与全球变暖方面的研究[Liu Yuntong(1979-), male, born in Cangzhou, Hebei Province, assistant professor, research on the relationship between GHGs emission and global warming].E-mail: liuyuntong@xtbg.ac.cn
*通信作者(Corresponding author):张一平(1957-),男,研究员,主要从事森林生态系统碳循环方面的研究[Zhang Yiping(1957-), male, professor, research on carbon cycle in forest ecosystems].E-mail: yipingzh@xtbg.ac.cn
更新日期/Last Update: 2017-11-30