[1]张 莉,等.泥石流拦砂坝坝前沉积与坝基扬压力实验研究[J].山地学报,2018,(02):271-279.[doi:10.16089/j.cnki.1008-2786.000322]
 ZHANG Li,YOU Yong,LIU Jinfeng,et al.Experimental Study on Characteristics of Debris Flow Deposition and the Uplift Pressure of a Check Dam[J].Mountain Research,2018,(02):271-279.[doi:10.16089/j.cnki.1008-2786.000322]
点击复制

泥石流拦砂坝坝前沉积与坝基扬压力实验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年02期
页码:
271-279
栏目:
山地灾害
出版日期:
2018-03-30

文章信息/Info

Title:
Experimental Study on Characteristics of Debris Flow Deposition and the Uplift Pressure of a Check Dam
文章编号:
1008-2786-(2018)2-271-09
作者:
张 莉1 2 3游 勇1 2柳金峰1 2孙 昊1 2 3刘道川1 2 3
1.中国科学院山地灾害与地表过程重点实验室,成都 610041; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 3.中国科学院大学,北京 100049
Author(s):
ZHANG Li123YOU Yong12LIU Jinfeng12SUN Hao123LIU Daochuan123
1.Key Laboratory of Mountain Hazards and Earth Surface Process, Chinese Academy of Sciences, Chengdu 610041, China; 2.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China; 3.University of Chinese Academy of Sc
关键词:
泥石流 拦砂坝 颗粒沉降 孔隙水压力消散 扬压力
Keywords:
debris flow check dam grain deposition hydraulic diffusion uplift pressure
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000322
文献标志码:
A
摘要:
泥石流在坝前堆积固结的过程发生泥石流浆体中固体颗粒沉降和孔隙水压力消散,它直接影响了坝基扬压力大小和变化,对坝体稳定性造成影响。本文通过自制实验模型装置模拟不同密度泥石流作用在坝前的沉积渗透过程,观测不同密度泥石流坝前沉积特征和浆体细颗粒沉降速率,并通过水压传感器测得坝前沉积底部孔隙水压力和坝基扬压力随沉积时间的变化过程,最后结合不同密度泥石流沉积特征分析了泥石流沉积过程对扬压力衰减过程的影响。研究结果表明:稀性泥石流沉积过程中具有明显的颗粒分选性,且浆体细颗粒沉降速率与泥石流密度表现出线性负相关性; 泥石流沉积底部孔隙水压力随沉积时间呈指数衰减趋势,拟合指数函数系数与上部浆体细颗粒沉降速率满足线性正相关性; 沉积过程中坝基扬压力与坝前沉积底部孔隙水压力具有相同的对数衰减趋势,两者呈线性正相关性。本研究着眼于拦砂坝扬压力产生机制,研究了泥石流坝前颗粒沉积和水力扩散过程对坝基扬压力变化过程的影响,为拦砂坝扬压力计算提供了新的视角,具有一定的工程和理论意义。
Abstract:
Sediment deposition and pore water dissipation are two processes in which excess pore water pressure evolves into effective stress during debris flow deposition.Pore water dissipation directly affects the magnitude and variation of dam foundation uplift pressure, thus compromising the stability of check dams.In this study, a special experimental apparatus was designed to simulate debris flow deposition and dam foundation seepage.In order to investigate the sediment sorting characteristics and its influence on uplift pressure, six groups of laboratory model experiments were conducted.During each test, pore water pressure at the depositional bottom of debris flow and uplift pressure at check dam foundation were collected using six water pressure sensors.Slurry deposition rates of debris flows with different densities were measured by video recorders.The results indicated that sediment sorting and pore water dissipation properties were interrelated with the uplift pressures in the debris flow deposition process.Particle sorting occurred when dilute debris flows started to deposit, where the upper slurry deposition rates was found to be negatively correlated with debris flow density.Experimental results indicated that the pore water pressure at the depositional bottom attenuated logarithmically with an attenuation coefficient that correlated linearly with the upper slurry deposition rate.Meanwhile, the dam foundation uplift pressure attenuated logarithmically and showed a linear variation with the pore water pressure at the depositional bottom.By this study a comprehensive understanding about uplift pressure generating mechanisms in check dam foundations was obtained, with particular focus on the debris flow deposition and pore water dissipation processes.New perspective has been gained in determining uplift pressures in check dam designs, thus providing better technical support and reference for debris flow disaster prevention and mitigation.

参考文献/References:

[1] IVERSON R M, GEORGE D L.A depth-averaged debris-flow model that includes the effects of evolving dilatancy.I.Physical basis [J].Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 2014, 470(2170): 20130819.
[2] CUI Peng.Study on conditions and mechanisms of debris flow initation by means of experiment [J].Chinese Science Bulletin, 1992, 37(9): 759.
[3] TAKAHASHI T.Debris flow: mechanics, prediction and countermeasures [M].CRC press, 2014:1-36.
[4] IVERSON R M.The physics of debris flows [J].Reviews of Geophysics, 1997, 35(3): 245-96.
[5] 崔鹏, 唐金波, 林鹏智.泥石流运动阻力特性及其研究进展 [J].四川大学学报(工程科学版), 2016, 48(3): 1-11 [CUI Peng, TANG Jinbo, LIN Pengzhi.Research progress of resistance character of debris flow [J].Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 1-11]
[6] 费祥俊, 舒安平.泥石流运动机理与灾害防治[M].清华大学出版社有限公司, 2004:22-33 [FEI Xiangjun, SHU Anping.The physics and prevention of debris flow [M].Tsinghua University Press Ltd, 2004:22-33]
[7] 倪晋仁, 章书成.阵性泥石流运动与堆积的欧拉-拉格朗日模型-Ⅰ理论 [J].自然灾害学报, 2000, 9(3): 8-14 [NI Jinren, ZHANG Shucheng, et al.An Euler-Largrange model for non-continuous debris flow:Ⅰ.theory [J].Journal of Natural Disasters, 2000, 9(3): 8-14.]
[8] HAAS T, BRAAT L, LEUVEN J R F W, et al.Effects of debris flow composition on runout, depositional mechanisms, and deposit morphology in laboratory experiments [J].Journal of Geophysical Research-Earth Surface, 2015, 120(9): 1949-72.
[9] MAJOR J J.Gravity-Driven Consolidation of Granular Slurries: Implications for Debris-Flow Deposition and Deposit Characteristics [J].Journal of Sedimentary Research, 2000, 70(1): 64-83.
[10] MAJOR J J, IVERSON R M.Debris-flow deposition: Effects of pore-fluid pressure and friction concentrated at flow margins [J].Geological Society of America Bulletin, 1999, 111(10): 1424-34.
[11] HAMPTON M A.Buoyancy in Debris Flows [J].Journal of Sedimentary Research, 1979, 49(3): 753-8.
[12] PIERSON T C.Dominant particle support mechanisms in debris flows at Mt Thomas, New Zealand, and implications for flow mobility [J].Sedimentology, 1981, 28(1): 49-60.
[13] HE Songtang, WANG Daojie, CHEN Shun, et al.Natural consolidation characteristics of viscous debris flow deposition [J].Journal of Mountain Science, 2016, 13(10): 1723-34.
[14] BOERR D, DIDWANIA A K.The effect of uplift in liquid-saturated porous solids-Karl Terzaghi's contributions and recent findings [J].Geotechnique, 1997, 47(2): 289-98.
[15] 金峰, 梁通.扬压力问题存在的分歧及最新进展 [J].水力发电学报, 2009, 28(3): 62-8 [JIN Feng, LIANG Tong, The difference in concept of uplift force and its recent progress [J].Journal of Hydroelectric Engineering, 2009, 28(3): 62-8]
[16] BARLA G, BONINI M, CAMMARATA G.Stress and seepage analyses for a gravity dam on a jointed granitic rock mass[C]//Proceedings of the First International UDEC/3DEC Symposium, Bochum.2004, 29: 263-268
[17] 钟敦伦, 谢洪.泥石流灾害及防治技术[M].四川科学技术出版社, 2014:250-251 [ZHONG Dunlun, XIE Hong, Prevention and control technology of debris flow disaster [M].Sichuan Science and Technology Press, 2014:250-251]
[18] 李德基.泥石流减灾理论与实践[M].北京:科学出版社, 1997:96-98 [LI Deji, Theory and practice of debris flow disaster reduction [M].Beijing: Science Press, 1997:96-98]
[19] 邱贤德, 阎宗岭, 刘立, 等.堆石体粒径特征对其渗透性的影响 [J].岩土力学, 2004, 25(6): 950-4 [QIU Xiande, YAN Zongling, LIU Li, et al.Effect of particle-size characteristics on seepage property of rockfill [J], Rock and Soil Mechanics, 2004, 25(6): 950-4]
[20] 康志成, 李焯芬, 马蔼乃, 等.中国泥石流研究 [M].科学出版社, 2004:119-123 [KANG Zhicheng, LI Zhaofen, MA Ainai,et al.Research on debris flow in China [M].Science Press,2004:119-123]
[21] 朱国胜, 张家发, 陈劲松,等 宽级配粗粒土渗透试验尺寸效应及边壁效应研究 [J].岩土力学, 2012, 33(9): 2569-74 [ZHU Guosheng, ZHANG Jiafa, CHEN Jinsong, et al..Study of size and wall effects in seepage test of broadly graded coarse materials [J].Rock and Soil Mechanics, 2012, 33(9): 2569-74]
[22] 陈宁生, 杨成林, 李欢.基于浆体的泥石流容重计算 [J].成都理工大学学报(自科版), 2010, 37(2): 168-73 [CHEN Ningsheng,YANG Chenglin, LI Huan.Caculation of debris flow concentration based on debris flow slurry [J].Journal of Chengdu University of Technology(Natural Science Edition).2010, 37(2): 168-73]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(02):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(02):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(02):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(02):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(02):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(02):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(02):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(02):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(02):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(02):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2017-9-2; 改回日期(Accepted date):2018-4-17
基金项目(Foundation item):中国科学院STS项目(KFJ-EW-STS-094); 国家科技支撑计划课题(2014BAL05B01)。[STS Project of Chinese Academy of Sciences(KFJ-EW-STS-094); National Science and Technology Support Program(2014BAL05B01).]
作者简介(Biography):张莉(1992 -),女,重庆忠县人,硕士研究生,主要研究方向:山地灾害综合防治技术实验研究。[ZHANG Li(1992-), female, born in Chongqing, M.Sc.candidate, research on integrated prevention and control of mountain disasters.] E-mail: zhangli15@imde.ac.cn
*通讯作者(Corresponding author):游勇(1964 -),男,四川乐山人,研究员,博士生导师,主要研究方向:山地灾害综合防治技术研究。[YOU Yong(1964-), male, born in Leshan, Sichuan Province, professor, research on integrated prevention and control of mountain disasters.] E-mail: yyong@imde.ac.cn
更新日期/Last Update: 2018-03-30