[1]王 飞,唐辉明*,章广成,等.雅砻江上游深层倾倒体发育特征及形成演化机制[J].山地学报,2018,(03):411-421.[doi:10.16089/j.cnki.1008-2786.000337]
 WANG Fei,TANG Huiming*,ZHANG Guangcheng,et al.Development Characteristics and Evolution Mechanism of the Deep-Seated Toppling in the Upstream of the Yalong River, China[J].Mountain Research,2018,(03):411-421.[doi:10.16089/j.cnki.1008-2786.000337]
点击复制

雅砻江上游深层倾倒体发育特征及形成演化机制()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年03期
页码:
411-421
栏目:
山地灾害
出版日期:
2018-05-30

文章信息/Info

Title:
Development Characteristics and Evolution Mechanism of the Deep-Seated Toppling in the Upstream of the Yalong River, China
文章编号:
1008-2786-(2018)3-411-11
作者:
王 飞1唐辉明12*章广成1刘 晓2
1.中国地质大学(武汉)工程学院,武汉 430074; 2.教育部长江三峡库区地质灾害研究中心,武汉 430074
Author(s):
WANG Fei1 TANG Huiming12* ZHANG Guangcheng1 LIU Xiao2
1.Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; 2.Three Gorges Research Center for Geohazards, Ministry of Education, Wuhan 430074, China
关键词:
雅砻江上游 深层倾倒 形成条件 演化机制 稳定性评价
Keywords:
upstream of the Yalong River deep-seated toppling formation condition evolution mechanism stability analysis
分类号:
P642
DOI:
10.16089/j.cnki.1008-2786.000337
文献标志码:
A
摘要:
深层倾倒是雅砻江上游层状斜坡变形破坏的主要模式。利用基于演化过程的工程地质研究方法,分析深层倾倒体工程地质特性和内部变形破坏-力学机制,进行工程地质分区评价,并从变形过程和演化阶段上定性认识斜坡的整体稳定性。研究表明:区内深层倾倒体发育规模巨大、变形程度剧烈,且具有明显的分区性,为典型的互层倾倒; 软硬相间的岩性组合、陡倾的岸坡结构,加之垂直层面密集节理的切割是深层倾倒体形成的控制性因素。在叠加有残余构造应力的自重应力场中,互层倾倒是受节理面和层面控制的复合倾倒模式,即:硬岩发生块状-弯曲倾倒,而软岩发生弯曲倾倒; 受河谷演化控制,深层倾倒体主要经历4个演化阶段:卸荷回弹陡倾面拉裂阶段,初始变形阶段,板梁根部折断、剪切面贯通阶段以及破坏阶段,并最终转化为蠕滑-拉裂模式形成滑坡; 变形破坏模式的转化是深层倾倒体进入累进性破坏阶段的重要标志,该滑动面受倾向坡外结构面控制,主要发生在强变形岩体中,而并非沿最大弯折带发育。
Abstract:
Deep-seated toppling dominates the failures of anti-inclined rock slopes in the upstream of the Yalong River.In this paper, researches on the development characteristics and evolution mechanism of deep-seated toppling were carefully conducted using engineering geological method.Based on comprehensive investigation on the geological settings and failure mechanism occurring in rock slopes over the Yalong River, a classification of deformation zone was established to assess slope stability from the view of deformation process and evolution stage.Results indicated that in the research area, the deep-seated toppling had suffered severe deformations characterized by typical interbedding toppling,which were a recombination of block-flexure toppling in hard rock and flexure toppling in soft rock, respectively.Moreover, the combination of inner and outer factors governed the deformations, where the structure of soft and hard rock interbedded with well-developed cross-joints perpendicular to the bedding surface had played a key role in the deformation and evolution of the slope.Controlled by the evolution of valley, the deep-seated toppling underwent four major evolution stages, unloading and rebound stage, initial deformation stage, breaking in flexure, and failure as a landslide.The transformation of failure mode was a significant indicator of the acceleration failure of deep-seated toppling, and landslides represented a limiting condition of the toppling process to be reached.Unlike the existing conclusions, the failure surfaces were developed along the cross-joints in strongly deformed rock, rather than the maximum bending zone.

参考文献/References:

[1] ASHBY J.Sliding and toppling modes of failure in models and jointed rock slopes[D].London: London University, Imperial College, 1971:54-183
[2] GOODMAN R E, BRAY J W.Toppling of rock slopes[C]// Proceedings of the Specialty Conference on Rock Engineering for Foundations and Slopes.ASCE.Boulder, Colorado, 1976: 201-234
[3] 张倬元,王士天,王兰生.工程地质分析原理[M].北京: 地质出版社,1994:331 [ZHANG Zhuoyuan, WANG Shitian, WANG Lansheng.Engineering geological analysis principle[M].Beijing: Geology Press, 1994: 331]
[4] HUANG R Q.Understanding the mechanism of large-scale landslides[G]//Lollino et al.Engineering Geology for Society and Territory: Landslide Processes.Switzerland: Springer, 2015, Volume 2: 13-32
[5] 黄润秋.20世纪以来中国的大型滑坡及其发生机制[J].岩石力学与工程学报,2007,26(3):433-454 [HUANG Runqiu.Large-scale landslides and their sliding mechanisms in China since the 20th Century[J].Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454]
[6] 黄润秋,李渝生,严明.斜坡倾倒变形的工程地质分析[J].工程地质学报,2017,25(5):1165-1181 [HUANG Runqiu, LI Yusheng, YAN Ming.The implication and evaluation of toppling failure in engineering geology practice[J].Journal of Engineering Geology, 2017, 25(5): 1165-1181]
[7] 刘丽娟,游湘,顾成壮.新龙水电站库区倾倒变形体数值模拟分析[J].长江科学院院报,2014,31(11):92-96 [LIU Lijuan, YOU Xiang, GU Chengzhuang.Numerical simulation of toppling rock mass of Xinlong Hydropower Station[J].Journal of Yangtze River Scientific Research Institute, 2014, 31(11): 92-96]
[8] 王飞,唐辉明.雅砻江上游互层斜坡倾倒变形破坏机制与演化[J].工程地质学报,2017,25(6):1501-1508 [WANG Fei, TANG Huiming.Mechanism and evolution of toppling in interbedded slopes at upstream of Yalong River.Journal of Engineering Geology, 2017, 25(6): 1501-1508]
[9] ZANBAK C.Design charts for rock slopes susceptible to toppling[J].Journal of Geotechnical and Geoenvironmental Engineering, 1983, 109(8): 1039-1062
[10] 陈祖煜,张建红,汪小刚.岩石边坡倾倒稳定性分析的简化方法[J].岩土工程学报,1996,6(11):92-95 [CHEN Zuyu, ZHANG Jianhong, WANG Xiaogang.Simplified stability analysis method of toppling failure of jointed rock slopes[J].Chinese Journal of Geotechnical Engineering, 1996, 6(11): 92-95]
[11] BOBET A.Analytical solutions for toppling failure[J].International Journal of Rock Mechanics and Mining Sciences, 1999, 36: 971-980
[12] SAGASETA C, SANCHEZ J M, CANIZAL J.A general analytical solution for the required anchor force in rock slopes with toppling failure[J].International Journal of Rock Mechanics and Mining Sciences, 2001, 38: 421-435
[13] LIU C H, JAKSA M B, MEYERS A G.A transfer coefficient method for rock slope toppling[J].Canadian Geotechnical Journal, 2009, 46: 1-9
[14] PRITCHARD M A, SAVIGNY K W.Numerical modelling of toppling[J].Canadian Geotechnical Journal, 1990, 27: 823-834
[15] 张建玲.雅砻江中游构造地貌特征及演化[D].成都:成都理工大学,2012:19-39 [ZHANG Jianlin.The tectonic landform features and evolution of the middle reaches of the Yalong River[D].Chengdu: Chengdu University of Technology, 2012: 19-39]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-4-7; 改回日期(Accepted date):2018-6-12
基金项目(Foundation item):国家自然科学基金重点项目(41230637); 国家自然科学基金面上项目(41572279)。[Key Program of National Natural Science Foundation of China(41230637); General Program of National Natural Science Foundation of China(41572279)]
作者简介(Biography):王飞(1987-),男,江苏泰兴人,博士研究生,主要研究方向:地质工程与岩土工程。[WANG Fei(1987-), male, born in Taixing, Jiangsu province, Ph.D.candidate, research on geological engineering and geotechnical engineering] E-mail:cugfeiwang@gmail.com
*通讯作者(Corresponding author):唐辉明(1962-),男,江苏东台人,博士,教授,主要研究方向:地质工程与岩土工程。[TANG Huiming(1962-), male, born in Dongtai, Jiangsu province, Ph.D., professor, research on geological engineering and geotechnical engineering]E-mail:hmtang6205@sina.com
更新日期/Last Update: 2018-05-30