[1]袁 路,胡雨豪,马东涛*,等.泥石流性质和规模对声波特性影响的实验研究[J].山地学报,2018,(06):889-897.[doi:10.16089/j.cnki.1008-2786.000384]
 YUAN Lu,HU Yuhao,MA Dongtao *,et al.Experimental Study on the Influence of Debris Flow Properties and Scale on Acoustic Characteristics[J].Mountain Research,2018,(06):889-897.[doi:10.16089/j.cnki.1008-2786.000384]
点击复制

泥石流性质和规模对声波特性影响的实验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2018年06期
页码:
889-897
栏目:
山地灾害
出版日期:
2018-11-30

文章信息/Info

Title:
Experimental Study on the Influence of Debris Flow Properties and Scale on Acoustic Characteristics
文章编号:
1008-2786-(2018)6-889-09
作者:
袁 路12胡雨豪4马东涛13*李 梅5
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院大学,北京100049; 3.中国科学院山地灾害与地表过程重点实验室,成都610041; 4.中煤科工集团重庆设计研究院,重庆400016; 5.中国地质大学(北京),北京100083
Author(s):
YUAN Lu12 HU Yuhao4 MA Dongtao13 * LI Mei5
1. Institution of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Key Laboratory of Mountain Hazards and Earth Surface process, Chinese Academy of Sciences, Chengdu 610041, China; 4. CCTEG Chongqing Engineering Co. Ltd, Chongqing 400016, China; 5. China University Of Geosciences, Beijing 100083, China
关键词:
泥石流 性质 规模 声波 振幅 频率
Keywords:
debris flow property discharge acoustic wave amplitude frequencies
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000384
文献标志码:
A
摘要:
泥石流的声波是泥石流声波预警的重要媒介,声波的特性从一定程度上可以反映泥石流的性质和规模。通过开展容重为1.3 t·m-3、1.5 t·m-3、1.7 t·m-3、2.0 t·m-3和不同流量(规模)的34次室内泥石流实验,采集了泥石流流速、流量(规模)数据及声波信号,采用短时傅里叶变换(STFT)和滤波器对声波信号进行处理,分析研究了泥石流容重、流量对声波最大振幅、时域频域、声波能量的影响规律。实验表明:声波振幅的高低可反映泥石流规模的大小,泥石流声波最大振幅与流量表现出线性正相关性; 泥石流声波最大振幅随容重呈线性增长趋势,拟合函数系数与容重满足线性正相关性,据此可以估算泥石流的峰值流量及规模; 不同容重的泥石流声波能量分布频带不同,稀性泥石流的声波能量均匀分布在高(Band3)、中(Band2)、低(Band1)三个频带上,过渡性泥石流的声波能量集中在中、高两个频带上,粘性泥石流的声波能量集中在中、低两个频带上。通过对声波能量分布的分析,可以对泥石流的性质和类型进行判别。
Abstract:
The acoustic wave of debris flow serves as an important indicator for debris flow early warning, because it conveys reliable information of the property and the scale of a moving debris flow. In this study, 34 debris flow experiments were designed with combination of the varied density of 1.3 t·m-3, 1.5 t·m-3, 1.7 t·m-3, 2.0 t·m-3 and different volume discharge(scale)to collect the data of velocity, discharge(scale)and acoustic signal for analysis. It used the short-time Fourier transform(STFT)and filters to process acoustic signals and the quantitative relationship between peak amplitude and discharge, the distribution of acoustic energy were studied. Results showed that the peak amplitude of debris flow acoustic wave had a linearly positive correlation with its discharge. Peak amplitude increased linearly with the density, and fitting coefficient was linearly and positively correlated to density. The acoustic energy of debris flow varied with different bulk density. The acoustic energy of dilute debris flow was distributed evenly in three frequency bands: high frequency band(Band 3), middle frequency band(Band 2)and low frequency band(Band 1). The transitional debris flow behaved mainly in the middle and high frequency bands, whereas viscous debris flow presented in the middle and low frequency bands. The comprehensive understandings of debris flow acoustic characteristics by experiments would provide an insight into the early warning of debris flow for its type, scale and energy potential.

参考文献/References:

[1] 秦飞,郑菲,李均之. 孕震过程中次声波的产生机理[J]. 北京工业大学学报,2006,32(6):568-572 [QIN Fei, ZHENG Fei, LI Junzhi, et al. A Mechanism model for infrasound emission during earthquake incubation[J]. Journal of Beijing University of Technology, 2006, 32(6):568-572]
[2] 马大猷. 现代声学理论基础[M]. 北京:科学出版社,2005:5-10 [MA Dayou. Theoretical Basis of modern acoustic[M]. Beijing:China Science Publishing, 2005:5-10]
[3] 张金山,崔鹏. 泥石流预警及其实施方法[J]. 水利学报,2012,43(s2):174-180 [ZHANG Jinshan, CUI Peng. Research on and implementation of debris-flow forecast and warning[J]. Journal of Hydraulic Engineering, 2012, 43(s2):174-180]
[4] 钟敦伦,张金山,谢洪,等. 泥石流警报技术探索[J]. 山地学报,2011,29(2):234-242 [ZHONG Dunlun, ZHANG Jinshan, XIE Hong, et al. Techniques of debris flow alarm[J]. Mountain Research, 2011, 29(2):234-242]
[5] 章书成,余南阳. 泥石流次声波警报器DFW-ⅠⅢ型简介[J]. 山地学报,2008,(4):382 [ZHANG Shucheng, YU Nanyang. Debris flow infrasound alarm DFW-ⅠⅢ type profile[J]. Mountain Research, 2008,(4): 382]
[6] 刘敦龙. 基于次声监测的泥石流定位与实时监控方法[D]. 北京:中国科学院大学,2015:43-54[LIU Dunlong. Debris flow positioning and real-time monitoring based on infrasound monitoring[D].Beijing: University of Chinese Academy of Sciences, 2015:43-54]
[7] 章书成,余南阳. 泥石流早期警报系统[J]. 山地学报,2010,28(3):379-384 [ZHANG Shucheng, YU Nanyang. Early warning system to debris flow[J]. Mountain Research, 2010, 28(3):379-384]
[8] ZHANG Shucheng. A comprehensive approach to the observation and prevention of debris flows in China[J]. Natural Hazards, 1993, 7(1):1-23
[9] CHOU Hsienter, CHANG Yulung, ZHANG Shucheng. Acoustic signals and geophone response induced by stony-type debris flows[J]. Journal of The Chinese Institute of Engineers, 2013, 36(3):335-347
[10] 周铭. 不同形态泥石流地声与次声特性比较研究[D].南宁:广西大学,2014:124-128 [ZHOU Ming. Research on the characteristic of ground vibrations and infrasound produced by different types of debris flows[D]. Nanning: Guangxi University, 2014:124-128]
[11] KOGELNIG A, HÜBl J, SURIÑACH E, et al. Infrasound produced by debris flow: propagation and frequency content evolution[J]. Natural Hazards, 2014, 70(3):1713-1733
[12] SCHIMMEL A, HÜBL J. Automatic detection of debris flows and debris floods based on a combination of infrasound and seismic signals[J]. Landslides, 2015, 13(5): 1181-1196
[13] 何德伟. 泥石流次声特性及在警报中的应用[D]. 成都:中国科学院、水利部成都山地灾害与环境研究所,2008:45 [HE Dewei. Infrasonic characteristics of the debris flow and The application of the warning[D]. Chengdu:Institute of Mountain Hazards and Environment,Chinese Academy of Sciences, 2008:45]
[14] 李朝安,胡卸文,王良玮. 山区铁路沿线泥石流次声监测预警方法[J]. 声学技术,2012,31(4):351-356 [LI Chaoan, HU Xiewen, WANG Liangwei. Infrasound monitoring and early warning of debris flow along montanic railway line[J]. Technical Acoustics, 2012, 31(4):351-356]
[15] LENG Xiaopeng, LIU Dunlong, WEI Fangqiang, et al. Debris flows monitoring and localization using infrasonic signals[J]. Journal of Mountain Science, 2017, 14(7):1279-1291
[16] LIU Dunlong, LENG Xiaopeng, WEI Fangqiang, et al. Visualized localization and tracking of debris flow movement based on infrasound monitoring[J]. Landslides, 2018, 15(5): 879-893
[17] 周继发. 泥石流次声监测软硬件系统[D].北京:中国地质大学(北京),2016:66 [ZHOU Jifa. The software and hardware system of mudslides infrasound monitoring[D]. Beijing: China University of Geosciences(Beijing), 2016:66]
[18] 魏高荣. 泥石流次声监测预警系统设计[D].北京:中国地质大学(北京),2017:71-72 [WEI Gaorong. Design of mudslides infrasound monitoring and early warning system[D]. Beijing: China University of Geosciences(Beijing), 2017:71-72]
[19] 崔文杰. 基于次声的泥石流监测系统设计与分析[D].青岛:山东科技大学,2017:58-59 [CUI Wenjie. Design and analysis of debris flow monitoring system based on infrasound method[D]. Qingdao: Shandong University of Science and Technology, 2017:58-59]
[20] 王济. MATLAB在振动信号处理中的应用[M]. 北京:中国水利水电出版社,2006:69-82 [WANG Ji. The application of MATLAB in vibration signal processing[M]. Beijing: China Water & Power Press, 2006:69-82]
[21] 裴益轩,郭民.滑动平均法的基本原理及应用[J]. 火炮发射与控制学报,2001,(1):21-23 [PEI Yixuan, GUO Min, The fundamental principle and application of sliding average method[J]. Gun Launch & Control Journal, 2001,(1):21-23]
[22] 许文杰,官洪运,邬晓琳. 泥石流次声信号时频分析方法的应用研究[J]. 计算机与现代化,2013,1(4):36-39 [XU Wenjie, GUAN Hongyun, WU Xiaolin. Analysis of debris flow infrasound signal based on time-frequency analysis methods[J]. Computer &Modernization, 2013, 1(4):36-39]
[23] 胡雨豪,袁路,马东涛,等.泥石流次声警报研究进展[J]. 地球科学进展,2018,33(6):606-613 [HU Yuhao, YUAN Lu, MA Dongtao, et al. Research progress on debris flow infrasound warning[J]. Advances in Earth Science, 2018,33(6):606-613]
[24] 廖传军, 李学军, 刘德顺. STFT在AE信号特征提取中的应用[J]. 仪器仪表学报,2008,29(9):1862-1867 [LIAO Chuanjun, LI Xuejun, LIU Deshun. Application of STFT in feature extraction of acoustic emission signal[J].Chinese Journal of Scientific Instrument, 2008, 29(9):1862-1867]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(06):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(06):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(06):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(06):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(06):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(06):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(06):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(06):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(06):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(06):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-06-15; 改回日期(Accepted date):2018-09-29
基金项目(Foundation item):国家自然科学基金项目(41572347)。[National Natural Science Foundation of China(41572347)]
作者简介(Biography):袁路(1993-),男,四川资阳人,硕士研究生,研究方向:山地质灾害减灾工程与岩土工程。[YUAN Lu(1993-),male, born in Ziyang, Sichuan province, M. Sc. candidate, research on geohazards prevention and geo-engineering] E-mail: yuanlu@imde.ac.cn.
*通讯作者(Corresponding author):马东涛(1965-),男,陕西武功人,博士,教授,研究方向:地质灾害基础理论研究和防灾减灾工程实践。[MA Dongtao(1965-), male, born in Wugong, Shaanxi province. Ph.D., Professor, specialized in geohazards prevention theory and engineering] E-mail: dtma@imde.ac.cn
更新日期/Last Update: 2018-11-30