[1]刘皓雯,秦 伟,高美荣,等.丘陵区典型小流域地下水化学特征与补给来源分析[J].山地学报,2019,(02):186-197.[doi:10.16089/j.cnki.1008-2786.000412]
 LIU Haowen,QIN Wei,GAO Meirong,et al.Chemical Characteristics and Recharging Rates in the Groundwater of Typical Small Watersheds in the Hilly Central Sichuan Basin, China[J].Mountain Research,2019,(02):186-197.[doi:10.16089/j.cnki.1008-2786.000412]
点击复制

丘陵区典型小流域地下水化学特征与补给来源分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年02期
页码:
186-197
栏目:
山地环境
出版日期:
2019-04-25

文章信息/Info

Title:
Chemical Characteristics and Recharging Rates in the Groundwater of Typical Small Watersheds in the Hilly Central Sichuan Basin, China
文章编号:
1008-2786-(2019)2-186-12
作者:
刘皓雯12 秦 伟3 高美荣1 陆 文12 唐家良1*
1.中国科学院、水利部成都山地灾害与环境研究所,成都610041; 2.中国科学院大学,北京100049; 3.中国水利水电科学研究院泥沙研究所,北京100049
Author(s):
LIU Haowen12 QIN Wei3 GAO Meirong1 LU Wen1 TANG Jialiang1*
1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3.China Institute of Water Resources and Hydropower Research, Beijing 100049, China
关键词:
丘陵区 水化学特征 同位素 地下水补给
Keywords:
hilly watershed water chemistry isotopes groundwater recharge
分类号:
P345
DOI:
10.16089/j.cnki.1008-2786.000412
文献标志码:
A
摘要:
川中紫色土丘陵区频发的季节性干旱严重制约区域农村经济和社会可持续发展。地下水是丘陵区农村居民饮用和灌溉的主要水源,但迄今该区域地下水补给循环过程的相关研究报道极少。本研究选取盐亭大兴小流域(480 hm2)为典型小流域进行综合水文观测与取样,比较了小流域内浅层地下水(2口泉水、14口井水)在不同覆被条件下雨季和旱季的水化学特征(包括D、18O)及水岩作用过程,并通过氯离子平衡法和二元混合模型法对比分析区域降水补给地下水规律。结果表明:(1)研究区内浅层地下水水化学类型为HCO3·SO4-Ca,主要控制因素为岩石风化水解;(2)由地下水同位素峰值响应特征可知该区域浅层地下水对雨季降水补给响应时间约为50~85 d; 雨季浅层地下水交换作用比旱季强烈;(3)氯离子平衡法受人为干扰较大,计算结果可能偏小,二元混合模型法未包含更多水源,计算结果可能偏大;(4)优化估算结果表明浅层地下水全年接受降水补给率在12%~38%间变化,雨季单次降水补给地下水比例在4.3%~58.0%间变化。本研究通过揭示丘陵区浅层地下水水化学性质变化规律,初步估算了浅层地下水补给来源及比例,可为区域地下水资源评估提供科学基础。
Abstract:
The frequent seasonal droughts impede the sustainable economic and social development in the hilly and rural area of central Sichuan Basin. Groundwater in the region is vital for drinking water supply and farming irrigation. However, there have been few relevant research on groundwater recycling process and recharge rates for central Sichuan Basin. In this study, Daxing watershed with an area of 480 ha was selected as case study to conduct integrated hydrological monitoring and sampling. The chemical properties and water-rock interaction processes were studied for the shallow groundwater bodies(including 2 springs and 14 wells)under different land covers during rainy and dry season, respectively. By comparing the chloride ion balance method with the two-component mixing model method using18O tracers, the recharging characteristics of groundwater in the region was interpreted. The results showed that chemical type of shallow groundwater was HCO3·SO4-Ca, which was mainly controlled by weathering and hydrolysis of rocks. It was confirmed that in the isotopic peaking signal of groundwater responding to rainfall water that recharging cycles of shallow groundwater in rainy season lasted about 50~85 days. The interaction processes in rainy season were stronger than those in dry season. The chloride ion balance method might relatively underestimated the values due to human interferences, whereas the mixing model method might make overestimation because only two major sources were considered. It suggested by the optimized estimation that the annual average recharging rates of shallow groundwater by precipitation ranged from 12% to 38%, and the rainfall recharging rates for each single rainfall events ranged from 4.3%% to 58.0%. By revealing the water chemistry dynamic of shallow groundwater in hilly area, this study preliminarily identified the groundwater recharge sources and estimated the recharging rates in a typical hilly area, and provid a scientific basis for further regional assessment of groundwater resources.

参考文献/References:

[1] 尹晗, 李耀辉. 我国西南干旱研究最新进展综述[J]. 干旱气象, 2013, 31(1): 182-193. [YIN Han, LI Yaohui. Summary of advance on drought study in southwest China[J]. Journal of Arid Meteorology, 2013, 31(1): 182-193]
[2] 王劲松, 张强, 王素萍, 等. 西南和华南干旱灾害链特征分析[J].干旱气象, 2015, 33(2): 187-194. [WANG Jinsong, ZHANG Qiang, WANG Suping, et al. Characteristic analysis of drought disaster chain in southwest and south China[J]. Journal of Arid Meteorology, 2015, 33(2): 187-194]
[3] 苏培东, 文敏, 袁勇. 川中红层区地下水特征及勘探开发方法探讨[J]. 水文, 2007, 27(4): 38-40. [SUI Peidong, WEN Min, YAUN Yong. Discussion on groundwater characteristics and exploration and development methods in the red bed area of central Sichuan province [J]. Journal of China Hydrology, 2007, 27(4): 38-40]
[4] 袁瑞强, 龙西亭, 王鹏, 等. 氯离子质量平衡法应用问题刍议[J]. 水文, 2015, 35(4): 7-13. [YUAN Ruiqiang, LONG Xiting, WANG Peng, et al. Discussion on application of chloride mass balance method[J]. Journal of China Hydrology, 2015,35(4):7-13]
[5] 宋献方, 刘相超, 夏军, 等. 基于环境同位素技术的怀沙河流域地表水和地下水转化关系研究[J]. 中国科学, 2007, 37(1): 102-110. [ SONG Xianfang, LIU Xiangchao, XIA Jun, et al. Study on the relationship between surface water and groundwater conversion based on environmental isotope techniques in Huaisha River Basin [J]. Science in China Press, 2007, 37(1): 102-110]
[6] 王欢欢. 基于深剖面土壤水同位素及氯离子的地下水补给机制研究[D]. 兰州: 西北农林科技大学, 2018: 11-23. [WANG Huanhuan. Determining groundwater recharge mechanism based on isotope and chloride characteristics of soil water from a deep soil profile[J]. Lanzhou: Northwest A&F University, 2018: 11-23]
[7] 刘澄静, 角媛梅, 刘志林, 等. 哈尼梯田区降水稳定氢氧同位素的旱雨季变化特征及其影响因素[J]. 山地学报, 2018, 36(4): 519-580. [LIU Chengjing, JIAO Yuanmei, LIU Zhilin, et al. Seasonal variations of precipitation stable hydrogen and oxygen isotope in Hani rice terraces and its influencing factors[J]. Mountain Research, 2018, 36(4): 519-580]
[8] MUKHERJEE A, FRYAR A E, ROWE H D. Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of West Bengal, India[J]. Journal of Hydrology, 2007, 334(1): 151-161.
[9] PATTERSON L J, STURCHIO N C, KENNEDY B M, et al. Cosmogenic, radiogenic, and stable isotopic constraints on groundwater residence time in the Nubian Aquifer, Western Desert of Egypt[J]. Geochemistry Geophysics Geosystems, 2013, 6(1):1005.
[10] GUO X, FENG Q, LIU W, et al. Stable isotopic and geochemical identification of groundwater evolution and recharge sources in the arid Shule River Basin of Northwestern China[J]. Hydrological Processes, 2015, 29(22):4703-4718.
[11] LIU F, SONG X, YANG L, et al. Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake basin, Ordos energy base, Northwestern China[J]. Hydrology and Earth System Sciences, 2015, 19(1): 551-565.
[12] 陆垂裕, 孙青言, 李慧, 等. 基于水循环模拟的干旱半干旱地区地下水补给评价[J]. 水利学报, 2014, 45(6): 701- 711.[LU Chuiyu, SUN Qingyan, LI Hui, et al. Estimation of groundwater recharge in arid and semi-arid areas based on water cycle simulation[J].Journal of Hydraulic Engineering, 2014, 45(6): 701-711]
[13] SCANLON B R, REEDY R C, STONESTROM D A, et al. Impact of land use and land cover change on groundwater recharge and quality in the southwestern US[J]. Global Change Biology, 2010, 11(10): 1577-1593.
[14] SCANLON B R, KEESE K E, FLINT A L, et al. Global synthesis of groundwater recharge in semiarid and arid regions[J]. Hydrological Processes, 2010, 20(15): 3335-3370.
[15] 汪敬忠, 吴敬禄, 曾海鳌, 等. 内蒙古河套平原水体同位素及水化学特征[J]. 地球科学与环境学报, 2013, 35(4): 104-112. [WANG Jingzhong, WU Jinglu, ZENG Haiao, et al. Characteristics of water isotope and hydrochemistry in Hetao Plain of inner Mongolia[J]. Journal of Earth Sciences and Environment, 2013, 35(4): 104-112]
[16] 谭秀翠, 杨金忠, 宋雪航, 等. 华北平原地下水补给量计算分析[J]. 水科学进展, 2013, 24(1): 73-81.[TAN Xiucui, YANG Jinzhong, SONG Xuehang. et al. Estimation of groundwater recharge in North China Plain[J]. Advances in Water Science, 2013, 24(1):73-81]
[17] JYRKAMA M I, SYKES J F. The impact of climate change on spatially varying groundwater recharge in the grand river watershed(Ontario)[J]. Journal of Hydrology, 2007, 338(3/4): 237-250.
[18] 朱波, 汪涛, 徐泰平, 等.紫色丘陵区典型小流域氮素迁移及其环境效应[J]. 山地学报, 2006, 24(5):601-606. [ZHU Bo, WANG Tao, XU Taiping, et al.Non-point-source nitrogen movement and its environment effects in a small watershed in hilly area of purple soil[J]. Mountain Research, 2006, 24(5): 601-606]
[19] 王红兰. 川中丘陵区林地与坡耕地土壤水力学性质研究[D]. 杨凌:西北农林科技大学, 2013:11-30.[WANG Honglan. Soil hydraulic parameters of forest land and sloping farmland in the hilly area of central Sichuan basin[D]. Yanling: Northwest A&F University, 2013:11-30]
[20] 汪涛, 朱波, 高美荣, 等. 川中丘陵区典型小流域地下水硝酸盐污染分析[J]. 生态与农村环境学报, 2006, 22(3): 84-87.[WANG Tao, ZHU Bo, GAO Meirong, et al. Nitrate pollution of groundwater in a typical small watershed in the central Sichuan hilly region[J]. Journal of Ecology and Rural Environment,2006, 22(3):84-87]
[21] 沈茜, 唐家良, 朱波. 紫色丘陵区典型小流域非点源磷迁移特征[J]. 山地学报, 2015, 33(5): 528-537. [SHEN Xi, TANG Jialiang, ZHU Bo. Characteristics of non-point-source phosphorus losses in some representative land-use sub-catchments in the hilly area of Purple Soil[J]. Mountain Research, 2015, 33(5): 528-537]
[22] 李秋芬, 苗顺德, 王铜山, 等.四川盆地晚二叠世克拉通内裂陷作用背景下的盐亭-潼南海槽沉积充填特征[J].地学前缘, 2015, 22(1):67-76.[LI Qiufen, WANG Shunde, WANG Tongshan, et al. Sedimentary filling configuration of Yanting-Tongnan through under the background of intracratonic rift in Late Permian, Sichuan Basin[J].Earth Science Frontiers,2015,22(1): 67-76]
[23] ZHAO P,TANG X,ZHAO P,et al.Tracing water flow from sloping farmland to streams using oxygen-18 isotope to study a small agricultural catchment in southwest China[J].Soil and Tillage Research, 2013, 134:180-194.
[24] 王芮, 唐家良, 章熙锋, 等. 亚热带农业小流域暴雨过程硝态氮迁移特征及水文示踪研究[J]. 水利学报, 2016, 47(8): 996-1004.[WANG Rui, TANG Jialiang, ZHANG Xifeng, et al. Characteristics of Nitrate-N losses through runoff and hydrological tracing in subtropical agricultural catchments[J]. Journal of Hydraulic Engineering, 2014, 2016, 47(8): 996-1004]
[25] SUBYANI A M. Use of chloride-mass balance and environ-mental isotopes for evaluation of groundwater recharge in the alluvial aquifer, Wadi Tharad, west Saudi Arabia[J]. Environmental Geology, 2004, 46(6): 741-749.
[26] CRAIG H. Standard for reporting concentrations of deuterium and oxygen-18 in natural waters[J]. Science, 1961, 133(3467):1833-1834.
[27] 张人权, 梁杏, 靳孟贵,等.水文地质学基础,第六版[M].北京:地质出版社, 2011: 1-7[ZHANG Renquan,LIANG Xin,JIN Menggui, et al. Beijing:Hydrogeological foundation[M]. Beijing: Geological Publishing House, 2011:1-7]
[28] WOOD W W, SANFORD W E. Chemical and isotopic methods for quantifying ground water recharge in a regional, semiarid environment [J]. Ground Water, 1995,33(3):458-468.
[29] LEANEY F W, HERCZEG A L. Regional recharge to a karst aquifer estimated from chemical and isotopic composition of diffuse and localized recharge, South Australia[J].Journal of Hydrology, 1995, 164(1):363-387.
[30] CLARK I D. Environmental isotope in hydrogeology [M]. Zhengzhou: Yellow River Water Conservancy Press, 2006:23-54.
[31] 钱会, 马致远, 李培月. 水文地球化学[M].北京:地质出版社,2012:142-143.[QIAN Hui, MA Zhiyuan, LI Peiyue. Hydrogeochemistry[M]. Beijng: Geological Publishing House, 2012:142-143]
[32] ZHAO P, TANG X Y, ZHAO P, et al. Identifying the water source for subsurface flow with deuterium and oxygen-18 isotopes of soil water collected from tension lysimeters and cores[J]. Journal of Hydrology, 2013, 503:1-10.
[33] BOATENG T K, OPOKU F, ACQUAAH S O, et al. Groundwater quality assessment using statistical approach and water quality index in Ejisu-Juaben Municipality, Ghana[J]. Environmental Earth Sciences, 2016, 75(6):1-14.
[34] 赵吉霞. 模拟酸雨对典型紫色母岩风化特征的影响[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2018: 32-34. [ZHAO Jixia. Effects of simulate acid rain on watering characteristics of typical purple rock[D]. Chengdu: University of Chinese Academy of Sciences, 2018: 32-34]
[35] GIBBS R J. Mechanisms controlling world water chemistry[J].Science,1970,170(23):1088- 1090.
[36] 王亚平, 王岚, 许春雪, 等.长江水系水文地球化学特征及主要离子的化学成因[J]. 地质通报, 2010, 29(2/3): 446-456.[WANG Yaping, WANG Lan, XU Chunxue, et al. Hydro-geochemistry and genesis of major ions in the Yangtze River, China[J]. Geological Bulletin of China, 2010, 29(2/3): 446-456]
[37] 迟恩先, 兰波, 肖延卿. 溶液温度及CO2含量对长石溶解度的影响[J]. 水资源与水工程学报, 2014, 25(2): 230-232. [CHI Enxian, LAN Po, XIAO Yanqin. Effect of solution temperature and CO2 content on solubility of feldspar [J]. Journal of Water Resources and Water Engineering, 2014, 25(2): 230-232]
[38] 吴旭东. 成都地区大气降水稳定同位素组成反应的气候特征[J]. 四川地质学报, 2009, 29(1), 52-58. [WU Xudong. Stable isotope compositions for meteoric water from Chengdu and their implication of climate[J]. Acta Geologica Sinica, 2009, 29(1), 52-58]
[39] CLARK I D, FRITZ P. Environmental isotopes in hydrogeology [M]. Florida: CRC press, 1997:19-30.
[40] 黄一民, 宋献方,何清华,等.洞庭湖流域下落雨滴蒸发研究[J].地理科学,2018, 38(8):1364-1369 [ HUANG Yiming, SONG Xianfang, HE Qinghua, et al. Study on the drop of raindrops in the Dongting Lake watershed[J]. Scientia Geographica Sinica, 2018, 38(8):1364-1369]
[41] 田立德, 姚檀栋, 孙维贞. 青藏高原南北降水中D和18O关系及水汽循环[J]. 中国科学(D),2001, 31(3): 214-220. [TIAN Lideng, YAO Tandong, SUN Weizhen. Relationship between D and 18O in the precipitation of the North and South of Qinghai-Tibet Plateau and the water vapor cycle[J]. Science in China(D), 2001, 31(3): 214-220]
[42] 王超. 紫色土坡耕地径流水源同位素示踪研究[D]. 成都: 中国科学院、水利部成都山地灾害与环境研究所, 2013: 2-10. [WANG Chao. Tracing water source on sloping farmland of purple soil by hydrogen and oxygen isotopes[D]. Chengdu: Institute of Mountain Hazards and Environment, CAS, 2013: 2-10]
[43] PANG Z, KONG Y, LI J, et al. An Isotopic Geoindicator in the Hydrological Cycle [J]. Procedia Earth & Planetary Science, 2017, 17:534-537.
[44] SHARMA M L, HUGHES M W. Groundwater recharge estimation using chloride, deuterium and oxygen-18 profiles in the deep coastal sands of Western Australia[J]. Journal of Hydrology, 1985, 81(1): 93-109.
[45] GREMILLION P, WANIELISTA M. Effects of evaporative enrichment on the stable isotope hydrology of a central Florida(USA)river[J]. Hydrological Processes, 2015, 14(8):1465-1484.
[46] 束龙仓, 陶月赞, 张元禧. 地下水水文学[M]. 北京:中国水利水电出版社,2009: 48-49. [SHU Longcang, TAO Yuezan, ZHANG Yuanxi. Groundwater Hydrology[M].Beijing: China Water Conservancy and Hydropower Press, 2009:48-49]
[47] 尹立河. 基于多种方法的地下水补给研究:以鄂尔多斯高原为例[D]. 北京:中国地质大学(北京), 2011: 33-60.[YIN Lihe. Estimation of groundwater recharge using multiple approaches:a case study in the ordos plateau[D]. Beijing: China University of Geosciences, 2011: 33-60]
[48] 程训强, 王明珠, 唐家良, 等. 低丘红壤区不同降雨类型对浅层地下水位动态变化的影响--以江西省余江县为例[J]. 山地学报, 2011, 19(5):51-61.[CHEN Xunqiang,WANG Mingzhu, TANG Jialiang, et al. Dynamic changes of underground water tables affected by different rainfall Types in low hilly red soil area[J]. Mountain Research, 2011, 19(5):51-61]
[49] 闫建梅, 何丙辉, 田太强, 等. 川中丘陵区不同土地利用方式土壤入渗与贮水特征[J]. 水土保持学报, 2014, 28(1): 53-57. [YAN Jianmei, HE Binghui, TAIN Taiqiang, et al. Soil infiltration and water-holding characteristics of different land use in Sichuan hilly basin[J]. Journal of Soil and Water Conservation, 2014, 28(1): 53-57]
[50] 刘皓雯, 章熙峰, 唐家良, 等. 川中紫色土丘陵区不同类型集水区暴雨事件氮流失特征对比研究. 人民长江, 2018, 49(12):16-22.[LIU Haowen, ZHANG Xifeng, TANG Jialiang, et al. Comparison of the nitrogen loss characteristics from catchments with different land use patterns in the hilly area of purple soil in Central Sichuan basin[J]. Renming River, 2018, 49(12): 16-22]

相似文献/References:

[1]钟祥浩.论四川盆地丘陵区防护林体系的建设[J].山地学报,1990,(01):61.
[2]刘刚才,朱波,林三益,等.四川紫色土丘陵区农林系统的水土保持作用[J].山地学报,2001,(S1):60.
[3]龙花楼,张献忠,王军,等.长江上游丘陵区社会经济实力与坡耕地治理——以四川省中江县为例[J].山地学报,2004,(04):502.
[4]朱钟麟,陈建康,刘晓军,等.四川丘陵区节水农业效益综合评价指标体系与评价模型[J].山地学报,2007,(04):483.
[5]刘刚才,游翔,张建辉,等.紫色土丘陵区小流域综合治理对水土保持的作用[J].山地学报,2007,(05):590.
[6]王明杰,方一平.四川丘陵区经济发展的核心要素及其驱动能力[J].山地学报,2008,(06):707.
[7]刘刚才,游翔,张建辉,等.紫色土丘陵区陡坡荒地水土保持措施的适宜性初探[J].山地学报,2008,(06):714.
[8]魏良帅,郭蕾蕾,黄安邦,等.西南缺水区地下水水量、水质空间分异特征及成因分析——以乌蒙山片区金沙江干流绥江—屏山段为例[J].山地学报,2021,(5):658.[doi:10.16089/j.cnki.1008-2786.000628)]
 WEI Liangshuai,GUO Leilei,HUANG Anbang,et al.Spatial Differentiation of Groundwater Storage, Quality and Their Genesis in Water-Deficient Areas of Southwest China:A Case Study of the Suijiang-Pingshan Section of the Jinshajinag River in the Wumengshan Mountain Contiguous Zone, China[J].Mountain Research,2021,(02):658.[doi:10.16089/j.cnki.1008-2786.000628)]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-09-21; 改回日期(Accepted date):2019-1-23
基金项目(Foundation item):国家科技重大专项“水体污染控制与治理”(2017ZX07101001-02); 水土保持生态效应监测与评价技术研究(201501045); 中国科学院关键技术人才项目。[National Major Science and Technology Program for Water Pollution Control and Treatment(2017ZX07101001-02); Study on Monitoring and Evaluation Technology of Ecological Effects of Soil and Water Conservation(201501045); Key Technology Talents Project of Chinese Academy of Sciences]
作者简介(Biography):刘皓雯(1994-),女,四川乐山人,硕士研究生,研究方向为流域水文学与环境科学。[LIU Haowen(1994-), female, born in Leshan, Sichuan province, M.Sc. candidate, research on watershed hydrology and environmental science] E-mail:904455534@qq.com
*通讯作者(Corresponding author):唐家良(1975-),男,四川隆昌人,博士,研究员,研究方向为土壤地理与流域水文研究。[TANG Jialiang(1975-), male, Ph.D., professor, specialized in Soil Geography and Watershed Hydrology] E-mail: jltang@imde.ac.cn
更新日期/Last Update: 2019-03-30