[1]丁智强,高 璇,李玉辉*,等.石林县域洼地特征与资源环境效应[J].山地学报,2019,(03):316-327.[doi:10.16089/j.cnki.1008-2786.000425]
 DING Zhiqiang,GAO Xuan,LI Yuhui*,et al.Regional Characteristics and Resource-Environmental Effects of Karst Depressions in Shilin County, China[J].Mountain Research,2019,(03):316-327.[doi:10.16089/j.cnki.1008-2786.000425]
点击复制

石林县域洼地特征与资源环境效应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年03期
页码:
316-327
栏目:
山地环境
出版日期:
2019-07-20

文章信息/Info

Title:
Regional Characteristics and Resource-Environmental Effects of Karst Depressions in Shilin County, China
文章编号:
1008-2786-(2019)3-316-12
作者:
丁智强1高 璇1李玉辉1*俞筱押12
1.云南师范大学 旅游与地理科学学院,昆明 650500; 2.黔南民族师范学院 旅游与资源环境学院,贵州 都匀 558000
Author(s):
DING Zhiqiang1 GAO Xuan1 LI Yuhui1* YU Xiaoya12
1.School of Tourism and Geographical Sciences, Yunnan Normal University, Kunming 650500, China. 2. School of Tourism and Resource Environment, Qiannan Normal University for Nationalities, Duyun 558000, Guizhou, China
关键词:
“3S”技术 洼地形态参数 喀斯特水文结构 石漠化治理 石林
Keywords:
“3S” technology morphological parameters of depressions karst hydrological structure rocky desertification control Shilin County
分类号:
P931.5
DOI:
10.16089/j.cnki.1008-2786.000425
文献标志码:
A
摘要:
地貌类型的结构多样性和生态系统各要素耦合的复杂性,使得喀斯特人地关系地域系统中出现水土流失、石漠化、贫困等各种特殊的生态环境和社会问题。洼地是喀斯特地形分化的元地形,对其研究有助于从地貌动力学视角深化对喀斯特地区资源环境要素的认识。本文将基于ASTER-GDEM地形数据的GIS、RS空间分析与野外地质地貌调查成果相融合,研究石林县域洼地形态特征与空间格局,揭示洼地发育的资源环境效应。结果表明:(1)石林县域洼地8597个,总面积269.45 km2,占县域面积的15.16%,洼地平均面积3.13±6.83 hm2,深度15.8±11.2 m,坡度7.42±2.68°,长轴长度237±227 m,圆度指数1.26±0.28,频率分布呈左偏特征,洼地点蚀指数为6.14,显示区域地貌发育处于不成熟的初始分化状态。(2)石林县域洼地为显著聚集分布模式,按密度范围可分为高密度(>6个/km2)、中密度(5~6个/km2)和低密度(<5个/km2)三个区域。(3)洼地高低密度的差异性空间分布与泉眼、暗河、地下水系统流向等具有高度空间相关性,表现为地下水往往从高密度区向低密度区流动,暗河的源头区分布于高密度区,泉眼等地下水排泄通道位于低密度区; 植被覆盖度和石漠化强度等资源环境指标的分布在不同密度洼地区具有显著差异性,表现为随着洼地密度的增加,区域内低植被覆盖度和高等级石漠化强度的面积逐渐增加。洼地作为降雨汇聚成地表径流转入地下暗河的有利地形,其空间格局是区域水土资源流失/漏失的关键性空间格局,高密度洼地区是水土保持与石漠化治理的重要区域,这种认识为喀斯特地区资源环境规划及管理提供了地貌学理论与技术基础。
Abstract:
The diversity of landform types and the coupling complexity of ecosystem elements significantly contribute to distinctive environmental and social problems in karst human-land system, such as soil erosion, rocky desertification and poverty. The karst depression, an initial unit of karst topographic differentiation, play active role in the understanding of resources and environment in karst region in the perspective of geomorphic dynamics. In this paper, the ASTER-GDEM topographic data of Shilin County(China)was analyzed to study the morphological characteristics, spatial pattern, geomorphologic development and resource-environmental effects of depressions by using spatial analysis in Geographical Information System(GIS)and Remote Sensing(RS)with geological and geomorphological surveys. The results were the followings:(1)there were 8597 karst depressions with a total area of 269.45 km2, accounting for 15.16% of the county area. The basic geomorphic features of the individual depression were 3.13±6.83 hm2 in mean area, 15.8±11.2 m in mean depth, 7.42°±2.68° in mean slope, and 237±227 m in mean length of long axis with the roundness index of 1.26±0.28. The frequency shapes of the depressions' geomorphic parameters were characteristic of the peak skewed to the left; and the point-erosion index was 6.14, indicating that the geomorphological development of the Shilin County was in the initial and immature differentiation stage.(2)The spatial distribution pattern of the depressions in Shilin County showed significant aggregation that three levels of depression density existed, respectively being the high density depression area with over 6 depressions per km2, the middle density depression area with 5~6 depressions per km2 and the low density depression area with less 5 depressions per km2.(3)The spatial feature of depression density was highly correlated with the flow direction of springs, underground rivers, and groundwater. Namely, the springs, as the groundwater drainages, were located in the low-density areas, while the water source areas of the underground rivers were in the high-density areas, and the outlets of the groundwater rivers basically were in the low-density areas. Meanwhile, the vegetation coverage was negatively related to the depression density and the rocky desertification grades were positively related with the depression density in terms of their spatial distribution. The results gave the fact that the depressions, as a favorable topography for surface runoff transferring into underground river, were the key sites of loss and leakage of the regional water and soil, and the high-density area was critical to water and soil conservation and rocky desertification control. Therefore, the results support that geomorphological study of the key landforms could play role in karst resource and environment planning and management.

参考文献/References:

[1] FORD D C, WILLIAMS P W. Karst hydrogeology and geomorphology[M]. Hoboken: John Wiley and Sons Ltd., 2007: 3-10.
[2] 贵州师范大学喀斯特生态文明研究中心《喀斯特生态文明研究》委员会. 喀斯特生态文明研究[M]. 北京: 中国社会科学出版社, 2011: 3-62. [Research Committee of Karst Ecological Civilization Research of Karst Ecological Civilization Research Center of Guizhou Normal University. Study on karst ecological civilization[M]. Beijing: China Social Science Press, 2011: 3-62]
[3] 胡宝清. 喀斯特人地系统研究[M]. 北京: 科学出版社, 2014: 43-79. [HU Baoqing. Study on human-land systems in karst areas[M]. Beijing: Science Press, 2014: 43-79]
[4] 陈喜. 西南喀斯特地区水循环过程及其水文生态效应[M]. 北京: 科学出版社, 2014: 253-267. [CHEN Xi. Water circulation process and its hydro-ecological effects in karst areas of Southwest China[M]. Beijing: Science Press, 2014: 253-267]
[5] CVIJIC J. Das karstphänomen: versuch einer morphologischen monographie[J]. Geographische Abhandlungen, 1893, 5(3): 217-330.
[6] SISKA P P, GOOVAERTS P, HUNG I K. Evaluating susceptibility of karst dolines(sinkholes)for collapse in Sango, Tennessee, USA[J]. Progress in Physical Geography, 2016, 40(4): 579-597.
[7] GUTIERREZ F, PARISE M, DE WAELE J, et al. A review on natural and human-induced geohazards and impacts in karst[J]. Earth-Science Reviews, 2014, 138(11): 61-88.
[8] RUDZIANSKAITE A, TREIJA S, SKUJENIECE S. The change of water quality in the sinkholes in Lithuanian karst zone[C]// Jelgava:Research for rural development-annual 19th international scientific conference proceedings, 2013: 153-160.
[9] ANTONIC O, HATIC D, PERNAR R. DEM-based depth in sink as an environmental estimator[J]. Ecological Modelling, 2001, 138(1/3): 247-254.
[10] LI Xiaoyan, CONTRERAS S, SOLE-BENET A. Unsaturated hydraulic conductivity in limestone dolines: influence of vegetation and rock fragments[J]. Geoderma, 2008, 145(3/4): 288-294.
[11] 蒋忠诚, 罗为群, 邓艳,等. 岩溶峰丛洼地水土漏失及防治研究[J]. 地球学报, 2014, 35(5): 535-542. [JIANG Zhongcheng, LUO Weiqun, DENG Yan, et al. The leakage of water and soil in the karst peak cluster depression and its prevention and treatment[J]. Acta Geoscientica Sinica, 2014, 35(5): 535-542]
[12] GABROVSEK F, STEPISNIK U. On the formation of collapse dolines: a modelling perspective[J]. Geomorphology, 2011, 134(1/2, SI): 23-31.
[13] ETIENNE D, RUFFALDI P, DUPOUEY J L, et al. Searching for ancient forests: a 2000 year history of land use in northeastern French forests deduced from the pollen compositions of closed depressions[J]. Holocene, 2013, 23(5): 678-691.
[14] BATORI Z, CSIKY J, FARKAS T, et al. The conservation value of karst dolines for vascular plants in woodland habitats of Hungary: refugia and climate change[J]. International Journal of Speleology, 2014, 43(1): 15-26.
[15] 张川, 陈洪松, 聂云鹏, 等.喀斯特地区洼地剖面土壤含水率的动态变化规律[J]. 中国生态农业学报, 2013, 21(10): 1225-1232. [ZHANG Chuan, CHEN Hongsong, NIE Yunpeng, et al. Dynamics of soil profile water content in peak-cluster depression areas in karst region[J]. Chinese Journal of Eco-agriculture, 2013, 21(10): 1225-1232]
[16] 张盼盼, 胡远满, 肖笃宁, 等.岩溶洼地石漠化景观格局[J].生态学杂志, 2010, 29(9): 1860-1865. [ZHANG Panpan, HU Yuanman, XIAO Duning, et al. Stony desertification landscape pattern in karst depressions region[J]. Chinese Journal of Ecology, 2010, 29(9): 1860-1865]
[17] 常勇, 吴吉春, 姜光辉, 等.峰丛洼地岩溶泉流量和水化学变化过程中地面径流的作用[J].水利学报, 2012, 43(9): 1050-1057. [CHANG Yong, WU Jichun, JIANG Guanghui, et al. The impact of overland flow on the variation of discharge and hydrochemistry of karst spring in peak cluster[J]. Journal of Hydraulic Engineering, 2012, 43(9): 1050-1057]
[18] 胡文帙, 王世杰, 罗维均, 等.喀斯特峰丛洼地土地利用演变及其土壤侵蚀效应[J].生态学杂志, 2012, 31(4): 975-980. [HU Wenzhi, WANG Shijie, LUO Weijun, et al. Land use change and its effects on soil erosion in karst cluster-peak depression region[J]. Chinese Journal of Ecology, 2012, 31(4): 975-980]
[19] 李阳兵, 罗光杰, 白晓永, 等.典型峰丛洼地耕地、聚落及其与喀斯特石漠化的相互关系--案例研究[J].生态学报, 2014, 34(9): 2195-2207. [LI Yangbing, LUO Guangjie, BAI Xiaoyong, et al. The correlations among arable land, settlement and karst rocky desertification-cases study based on typical peak-cluster depression[J]. Acta Ecologica Sinica, 2014, 34(9): 2195-2207]
[20] 张伟, 陈洪松, 王克林, 等.典型喀斯特峰丛洼地坡面土壤养分空间变异性研究[J].农业工程学报, 2008, 24(1): 68-73. [ZHANG Wei, CHEN Hongsong, WANG Kelin, et al. Spatial variability of soil nutrients on hillslope in typical karst peak-cluster depression areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(1): 68-73]
[21] 张信宝, 白晓永, 刘秀明.洼地沉积的137Cs法断代测定森林砍伐后的喀斯特小流域土壤流失量[J].中国科学:地球科学, 2011, 41(2): 265-271. [ZHANG Xinbao, BAI Xiaoyong, LIU Xiuming. Application of a 137Cs fingerprinting technique for interpreting responses of sediment deposition of a karst depression to deforestation in the Guizhou Plateau, China[J]. Science China Earth Sciences, 2011, 41(2): 265-271]
[22] 童立强, 刘春玲, 聂洪峰. 中国南方岩溶石山地区石漠化遥感调查与演变研究[M]. 北京: 科学出版社, 2013:72-93. [TONG Liqiang, LIU Chunling, NIE Hongfeng. Remote sensing survey and evolution research on stony desertification in karst rocky mountain area of Southern China[M]. Beijing: Science Press, 2013:72-93]
[23] 王宇. 云南岩溶石山地区重大环境地质问题及对策[M]. 昆明: 云南科技出版社, 2013: 17-27. [WANG Yu. Major environmental geological problems and countermeasures in karst rock mountain area of Yunnan Province[M]. Kunming: Yunnan Science and Technology Press, 2013: 17-27]
[24] 俞锦标, 王雪瑜, 王宗汉.路南石林形成时代及古地理环境的初步分析[J].南京大学学报:自然科学版, 1983(2): 170-182. [YU Jinbiao, WANG Xueyu, WANG Zonghan. A preliminary study of age and palaogeograhyial environment of pinnacles in Lunan, Yunnan Province[J]. Journal of Nanjing University: Natural Science, 1983(2): 170-182]
[25] 林钧枢.路南石林形成过程与环境变化[J].中国岩溶, 1997, 16(4): 66-70. [LIN Junshu. Formation of Lunan stone forest and environmental change[J]. Carsologica Sinica, 1997, 16(4): 66-70]
[26] 张寿越.路南石林发育及其演进[J].中国岩溶, 1984(2): 83-93. [ZHANG Shouyue. The development and evolution of Lunan stone forest[J]. Carsologica Sinica, 1984(2): 83-93]
[27] 李玉辉, 梁永宁.滇中路南石林的发育年代[J].中国区域地质, 1998, 17(1): 45-52. [LI Yuhui, LIANG Yongning. The ages of development of the Lunan stone forest in Central Yunan[J]. Regional Geology of China, 1998, 17(1): 45-52]
[28] 李玉辉, 杨一光, 梁永宁, 等.云南石林岩溶发育的古环境研究[J].中国岩溶, 2001, 20(2): 9-13. [LI Yuhui, YANG Yiguang, LIANG Yongning, et al. Study of paleo-environment of Shilin Karst(stone forest)development, Yunnan, China[J]. Carsologica Sinica, 2001, 20(2): 9-13]
[29] 石林研究组.中国路南石林喀斯特研究[M].昆明: 云南科技出版社, 1997: 15-20. [Shilin Research Group. Karst study in Lunan Shilin, China[M]. Kunming: Yunnan Science and Technology Press, 1997: 15-20]
[30] 李玉辉, 丁智强, 吴晓月.基于Strahler面积--高程分析的云南石林县域喀斯特地貌演化的量化研究[J].地理学报, 2018, 73(5): 973-985. [LI Yuhui, DING Zhiqiang, WU Xiaoyue. A quantitative study on the karst geomorphic evolution of Shilin County in Yunnan Province of China based on Strahler hypsometric analysis[J]. Acta Geographica Sinica, 2018, 73(5): 973-985]
[31] WILLIAMS P W. Morphometric analysis of polygonal karst in New-Guinea[J]. Geological Society of America Bulletin, 1972, 83(3): 761-796.
[32] DAY M. Doline morphology and development in Barbados[J]. Annals of the Association of American Geographers, 2015, 73(2): 206-219.
[33] WALL J, BOHNENSTIEHL D R, WEGMANN K W. Morphometric comparisons between automated and manual karst depression inventories in Apalachicola National Forest, Florida, and Mammoth Cave National Park, Kentucky, USA[J]. Natural Hazards, 2017, 85(2): 729-749.
[34] HUANG Wei, DENG Chengbin, DAY M J. Differentiating tower karst(fenglin)and cockpit karst(fengcong)using DEM contour, slope, and centroid[J]. Environmental Earth Sciences, 2014, 72(2): 407-416.
[35] LIANG Fuyuan, XU Bo. Discrimination of tower-, cockpit-, and non-karst landforms in Guilin, Southern China, based on morphometric characteristics[J]. Geomorphology, 2014, 204(1): 42-48.
[36] LIANG Fuyuan, SHI Yuruo, ABROOK G. Mapping cockpit karst in Southern China from ASTER stereo images: DEM validation and accuracy assessment[J]. Carsologica Sinica, 2011, 30(2): 233-242.
[37] 中国科学院计算机网络信息中心. 地理空间数据云[DB/OL]. [2017-01-15]. http://www.gscloud.cn[Computer Network Information Center of Chinese Academy of Sciences. Geospatial data cloud[DB/OL]. [2017-01-15]. http://www.gscloud.cn]
[38] 宋林华.喀斯特洼地的发育机理及其水文地质意义[J].地理学报, 1986, 44(1): 41-50. [SONG Linhua. Mechanism of karst depression evolution and it is hydrogeological significance[J]. Acta Geographica Sinica, 1986, 44(1): 41-50]
[39] WILLIAMS P W. The geomorphic effects of groundwater[G]// CHORLEY R. I. Water, earth and man. London: Methuen, 1969: 269-284.
[40] FRAGOSO-SERVON P, BAUTISTA F, FRAUSTO F, et al. Caracterizacion de las depresiones karsticas(forma, tamaa y densidad)a escala 1:50000 y sus tipos de inundacion en el Estado de Quintana Roo, Mexico[J]. Revista Mexicana de Ciencias Geologicas, 2015, 31(1): 127-137.
[41] RIPLEY B D. The second-order analysis of stationary point processes[J]. Journal of Applied Probability, 1976, 13(2): 255-266.
[42] SILVERMAN B W. Density estimation for statistics and data analysis[G]// COX D,ISHAM V, KEIDING N, et al. Monographs on statistics and applied probability. London: Chapman and Hall, 1986: 8-9.
[43] BESAG J, DIGGLE P J. Simple Monte Carlo tests for spatial pattern[J]. Applied Statistics, 1977, 26(3): 327-333.
[44] 李苗苗, 吴炳方, 颜长珍, 等.密云水库上游植被覆盖度的遥感估算[J].资源科学, 2004, 26(4): 153-159. [LI Miaomiao, WU Bingfang, YAN Changzhen, et al. Estimation of vegetation fraction in the Upper Basin of Miyun reservoir by remote sensing[J]. Resources Science, 2004, 26(4): 153-159]
[45] JEANPERT J, GENTHON P, MAURIZOT P, et al. Morphology and distribution of dolines on ultramafic rocks from airborne LiDAR data: the case of southern Grande Terre in New Caledonia(SW Pacific)[J]. Earth Surface Processes and Landforms, 2016, 41(13): 1854-1868.
[46] AGUILAR Y, BAUTISTA F, MENDOZA M E, et al. Density of karst depressions in Yucatan State, Mexico[J]. Journal of Cave and Karst Studies, 2016, 78(2): 51-60.
[47] MARKOVIC J, BOCIC N, PAHERNIK M. Spatial distribution and density of dolines in the southeastern velebit area[J]. Geoadria, 2016, 21(1): 1-28.
[48] DENIZMAN C. Morphometric and spatial distribution parameters of karstic depressions, Lower Suwannee River basin, Florida[J]. Journal of Cave and Karst Studies, 2003, 65(1): 29-35.
[49] FAIVRE S, PAHERNIK M. Structural influences on the spatial distribution of dolines, Island of Brac, Croatia[J]. Zeitschrift Fur Geomorphologie, 2007, 51(4): 487-503.
[50] BAUER C. Analysis of dolines using multiple methods applied to airborne laser scanning data[J]. Geomorphology, 2015, 250(2): 78-88.
[51] 梁虹, 杨明德, 彭建, 等.路南石林喀斯特流域水文特征初探[J].中国岩溶, 2001, 20(4): 24-28. [LIANG Hong, YANG Mingde, PENG Jian, et al. The hydrological characteristics of the karst basin in Lunan stone forest[J]. Carsologica Sinica, 2001, 20(4): 24-28]
[52] SUSTERSIC F. A power function model for the basic geometry of solution dolines: considerations from the classical karst of south-central Slovenia[J]. Earth Surface Processes and Landforms, 2006, 31(3): 293-302.
[53] PARDO-IGUZQUIZA E, PULIDO-BOSCH A, LOPEZ-CHICANO M, et al. Morphometric analysis of karst depressions on a Mediterranean Karst Massif[J]. Geografiska Annaler Series A-Physical Geography, 2016, 98(3): 247-263.
[54] ZANDBERGEN P A. The effect of cell resolution on depressions in digital elevation models[J]. Applied GIS, 2006, 2(1): 1-35.
[55] YANG Xianwu, TANG Guoan, MENG Xin, et al. Saddle position-based method for extraction of depressions in fengcong areas by using digital elevation models[J]. Isprs International Journal of Geo-information, 2018, 7(4): 1-13.
[56] CHEN Zhao, AULER A S, BAKALOWICZ M, et al. The world karst aquifer mapping project: concept, mapping procedure and map of Europe[J]. Hydrogeology Journal, 2017, 25(3): 771-785.
[57] Pennsylvania Department of Conservation and Natural Resources. Interactive map of sinkholes[DB/OL]. Florida: Digital Ready Marketing LLC. [2018-3-15]. http://sinkholemaps. com.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-7-16; 改回日期(Accepted date):2018-11-25
基金项目(Foundation item):国家自然科学基金项目(41262013; 41371514); 云南师范大学研究生科研创新基金项目(yjs2018114)。 [National Natural Science Foundation of China(41262013; 41371514); Graduate Project of Research Innovation Foundation of Yunnan Normal University(yjs2018114)]
作者简介(Biography):丁智强(1993-),男,云南禄劝人,硕士研究生,主要研究方向:喀斯特地貌演化与资源环境效应。[DING Zhiqiang(1993-), male, born in Luquan, Yunnan province. M.Sc. candidate, research on geomorphological evolution of karst and its resource-environmental effects] E-mail: zhiqiang_ding9303@163.com.
*通讯作者(Corresponding author):李玉辉(1957-),男,教授,主要研究方向:喀斯特资源环境和生态恢复。[LI Yuhui(1957-), male, professor, specialized in environment and ecological restoration of karst resources] E-mail: lyh123zhang@163.com
更新日期/Last Update: 2019-05-30