参考文献/References:
[1] AERTS R, CHAPIN III F S. The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns[M]//Advances in Ecological Research. Academic Press, 1999, 30: 1-67.
[2] ELSER J J, BRACKEN M E, CLELAND E E, et al. Global analysis of Nitrogen and Phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems[J]. Ecology Letters, 2007, 10(12): 1135-1142.
[3] FAY P A, PROBER S M, HARPOLE W S, et al. Grassland productivity limited by multiple nutrients[J]. Nature Plants, 2015, 1(7): 15080-15087.
[4] REICH P B, OLEKSYN J, WRIGHT I J. Leaf Phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species[J]. Oecologia, 2009, 160(2): 207-212.
[5] LIU Chao, WANG Yang, WANG Nan, et al. Advances research in plant Nitrogen, Phosphorus and their stoichiometry in terrestrial ecosystems: a review[J]. Chinese Journal of Plant Ecology, 2012, 36(11): 1205-1216.
[6] WALKER A P, BECKERMAN A P, GU Lianhong, et al. The relationship of leaf photosynthetic traits - V-cmax and J(max)- to leaf Nitrogen, leaf Phosphorus, and specific leaf area: a meta-analysis and modeling study[J]. Ecology and Evolution, 2014, 4(16): 3218-3235.
[7] SCHIMEL D S, KITTEL T F, KNAPP A K, et al. Physiological interactions along resource gradients in a tallgrass prairie[J]. Ecology, 1991, 72(2): 672-684.
[8] QUESADA C A, PHILLIPS O L, SCHWARZ M, et al. Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate[J]. Biogeosciences, 2012, 9: 2203-2246.
[9] STEVENS C J, LIND E M, HAUTIER Y, et al. Anthropogenic Nitrogen deposition predicts local grassland primary production worldwide[J]. Ecology, 2015, 96(6): 1459-1465.
[10] KOLLER E K, PRESS M C, CALLAGHAN T V. Tight coupling between shoot level foliar N and P, leaf area, and shoot growth in Arctic dwarf shrubs under simulated climate change[J]. Ecosystems, 2016, 19(2): 326-338.
[11] 于贵瑞,王秋凤,方华军.陆地生态系统碳-氮-水耦合循环的基本科学问题、理论框架与研究方法[J].第四纪研究,2014, 34(4):683-698, 682. [YU Guirui, WANG Qiufeng, FANG Huajun. Fundamental scientific issues, theoretical framework and relative research method of carbon-nitrogen-water coupling cycles in terrestrial ecosystems[J]. Quaternary Science, 2014, 34(4): 683-698, 682]
[12] STEFFEN W, RICHARDSON K, ROCKSTROM J A, et al. Planetary boundaries: Guiding human development on a changing planet[J]. Science, 2015, 347(6223): 1259855.
[13] TURNER C L, BLAIR J M, SCHARTZ R J, et al. Soil N and plant responses to fire, topography, and supplemental N in tallgrass prairie[J]. Ecology, 1997, 78(6): 1832-1843.
[14] SEASTEDT T R. Mass, Nitrogen, and Phosphorus dynamics in foliage and root detritus of tallgrass prairie[J]. Ecology, 1988, 69(1): 59-65.
[15] AJWA H A, RICE C W, SOTOMAYOR D. Carbon and Nitrogen mineralization in tallgrass prairie and agricultural soil profiles[J]. Soil Science Society of America Journal, 1998, 62(4): 942-951.
[16] RAYNOR E J, JOERN A, BRIGGS J M. Bison foraging responds to fire frequency in nutritionally heterogeneous grassland[J]. Ecology, 2015, 96(6): 1586-1597.
[17] KOERNER S E, COLLINS S L. Interactive effects of grazing, drought, and fire on grassland plant communities in North America and South Africa[J]. Ecology, 2014, 95(1): 98-109.
[18] OWEN D F, WIEGERT R G. Mutualism between grasses and grazers: an evolutionary hypothesis[J]. Oikos, 1981, 36(3): 376-378.
[19] STREET L E, SHAVER G R, RASTETTER E B, et al. Incident radiation and the allocation of Nitrogen within Arctic plant canopies: implications for predicting gross primary productivity[J]. Global Change Biology, 2012, 18(9): 2838-2852.
[20] BORER E T, SEABLOOM E W, GRUNER D S, et al. Herbivores and nutrients control grassland plant diversity via light limitation[J]. Nature, 2014, 508(7497): 517-520.
[21] HAUTIER Y, NIKLAUS P A, HECTOR A. Competition for light causes plant biodiversity loss after eutrophication[J]. Science, 2009, 324(5927): 636-638.
[22] WILLIAMS M, RASTETTER E B. Vegetation characteristics and primary productivity along an Arctic transect: implications for scaling‐up[J]. Journal of Ecology, 1999, 87(5): 885-898.
[23] VAN WIJK M T, WILLIAMS M, SHAVER G R. Tight coupling between leaf area index and foliage N content in Arctic plant communities[J]. Oecologia, 2005, 142(3): 421-427.
[24] SHAVER G R, STREET L E, RASTETTER E B, et al. Functional convergence in regulation of net CO2 flux in heterogeneous tundra landscapes in Alaska and Sweden[J]. Journal of Ecology, 2007, 95(4): 802-817.
[25] 车克钧,傅辉恩,王金叶.祁连山水源林生态系统结构与功能的研究[J].林业科学,1998, 34(5):29-37. [CHE Kejun, FU Huien, WANG Jinshe. The structure and function of the water conservation forest ecosystems in Qilian Mountains[J]. Scientia Silvae Sinicae, 1998, 34(5): 29-37]
[26] 车克钧,傅辉恩.祁连山森林,冰川和水资源现状调查研究[J].北京林业大学学报,1998, 20(6):95-99. [CHE Kejun, FU Huien. Investigation on forest, glacier and water resources in the Qilian Mountains[J]. Journal of Beijing Forestry University, 1998, 20(6): 95-99]
[27] 王金叶,王彦辉,王顺利,等.祁连山林草复合流域降水规律的研究[J].林业科学研究,2006, 19(4):416-422. [WANG Jinshe, WANG Yanhui, WANG Shunli, et al. A preliminary study on the precipitation variation of complex watershed on forestry and grasses of Qilian Mountains[J]. Forest Research, 2006, 19(4): 416-422]
[28] 刘贤德,李效雄,张学龙,等.干旱半干旱区山地森林类型的土壤水文特征[J].干旱区地理,2009, 32(5):691-697. [LIU Xiande, LI Xiaoxiong, ZHANG Xuelong, et al. Hydrological characteristics of different forest types of soil in arid and semi-arid mountain[J]. Arid Land Geography, 2009, 32(5): 691-697]
[29] 王金叶. 祁连山水源涵养林生态系统水分传输过程与机理研究[D]. 长沙:中南林业科技大学,2006: 1-189. [Wang Jinye. study of mechanism and process of water transmission on water resource conservation forests ecosystem in Qilian Mountains[D]. Changsha: Central South University of Forestry and Technology, 2006:1-189]
[30] 王金叶,王彦辉,李新,等.祁连山排露沟流域水分状况与径流形成[J].冰川冻土,2006, 28(1):62-69. [WANG Jinye, WANG Yanhui, LI Xin, et al. Water situation and runoff production in the Pailugou Basin of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2006, 28(1): 62-69]
[31] 常宗强,冯起,吴雨霞,等.祁连山亚高山灌丛林土壤呼吸速率的时空变化及其影响分析[J].冰川冻土,2005, 27(5):666-672. [CHANG Zongqiang, FENG Qi, WU Yuxia, et al. Influence of environmental factors on soil CO2 efflux and its spatial and temporal variations in sub-alpine scrub forest of Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2005, 27(5): 666-672]
[32] KLODD A E, NIPPERT J B, RATAJCZAK Z, et al. Tight coupling of leaf area index to canopy nitrogen and phosphorus across heterogeneous tallgrass prairie communities[J]. Oecologia, 2016, 182(3): 889-898.
[33] JOHNSON L C, MATCHETT J R. Fire and grazing regulate belowground processes in tallgrass prairie[J]. Ecology, 2001, 82(12): 3377-3389.
[34] KOERSELMAN W, MEULEMAN A F. The vegetation N:P ratio: a new tool to detect the Nature of nutrient limitation[J]. Journal of Applied Ecology, 1996, 33(6): 1441-1450.
[35] GÜSEWELL S. N:P ratios in terrestrial plants: variation and functional significance[J]. New Phytologist, 2004, 164(2): 243-266.
[36] 陈凌云. 添加氮磷对亚高寒草甸金露梅群落各功能群化学计量学特征的影响[D]. 兰州:兰州大学,2010: 1-44. [Chen Linyun. Effects of N, P addition on N:P stoichiometry of different functional groups in Potentilla fruticosa community in a sub-alpine meadow[D]. Lanzhou: Lanzhou University, 2010: 1-44]
[37] ANDERSON R H, FUHLENDORF S D, ENGLE D M. Soil Nitrogen availability in tallgrass prairie under the fire-grazing interaction[J]. Rangeland Ecology & Management, 2006, 59(6): 625-631.
[38] CECH P G, VENTERINK H O, EDWARDS P J. N and P cycling in tanzanian humid savanna: influence of herbivores, fire, and N-2-Fixation[J]. Ecosystems, 2010, 13(7): 1079-1096.