[1]张 威,王宁练*,李 想,等.近20a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J].山地学报,2019,(03):347-358.[doi:10.16089/j.cnki.1008-2786.000428]
 ZHANG Wei,WANG Ninglian*,LI Xiang,et al.Glacier Changes and Its Response to Climate Change in the Gilgit River Basin, Western Karakorum Mountains over the Past 20 Years[J].Mountain Research,2019,(03):347-358.[doi:10.16089/j.cnki.1008-2786.000428]
点击复制

近20a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年03期
页码:
347-358
栏目:
山地环境
出版日期:
2019-07-20

文章信息/Info

Title:
Glacier Changes and Its Response to Climate Change in the Gilgit River Basin, Western Karakorum Mountains over the Past 20 Years
文章编号:
1008-2786-(2019)3-347-12
作者:
张 威12王宁练123*李 想12刘 凯12
1.西北大学 陕西省地表系统与环境承载力重点实验室,西安 710127; 2.西北大学 城市与环境学院地表系统与灾害研究院,西安 710127; 3.中国科学院青藏高原地球科学卓越创新中心,北京 100101
Author(s):
ZHANG Wei12 WANG Ninglian123* LI Xiang12 LIU Kai12
1.Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, Northwest University, Xi'an 710127, China;2.Institute of Earth Surface System and Hazards, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China;3.CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
关键词:
冰川 吉尔吉特河流域 气候变化 遥感
Keywords:
Glacier Gilgit River Basin Climate Change Remote Sensing
分类号:
P343.6
DOI:
10.16089/j.cnki.1008-2786.000428
文献标志码:
A
摘要:
冰川被誉为“固态水库”,对区域生态环境和发展至关重要。喀喇昆仑山地区的冰川出现了退缩停滞乃至前进的现象,被称为“喀喇昆仑异常”。为探明西喀喇昆仑地区吉尔吉特河(Gilgit River)流域的冰川面积变化及其影响因素,本文基于1993、2000、2016年三个时期的多景LandsatTM/ETM+/OLI遥感数据,通过目视解译法提取三期冰川边界。结果表明:(1)1993-2016年,吉尔吉特河流域冰川面积共萎缩了45.82±9.07 km2,约占1993年冰川总面积的4.07±0.80%。其中,1993-2000年冰川面积的年均萎缩率为0.19±0.02%,2000-2016年冰川面积的年均萎缩率为0.17±0.03%,即近15a来研究区冰川面积萎缩呈微弱的减缓趋势。(2)1993-2016年研究区内共有12条冰川发生过前进现象,其中G073768E36822N(冰川编码)冰川发生了较为快速的前进,在1996-1999年末端前进了477 m,前进速率为159 m·a-1。(3)近40 a来,吉尔吉特河流域的气温呈持续上升趋势,降水呈先减少后增加趋势。气温升高是研究区冰川退缩的主要原因,降水的增加缓解了因升温而导致的冰川面积萎缩。
Abstract:
Glacier is one of the most important freshwater repositories on the earth surface. Contrary to other regions of Tibetan Plateau, glaciers on the Karakoram Mountains were found to show a slow retreat or even advancement, which was often called as “Karakoram anomaly”. Based on the Landsat TM/ETM+/OLI remote sensing data of 1993, 2000 and 2016, the glacier boundaries within the Gilgit River Basin over the western part of Karakorum can be delimited for three stages by means of visual interpretation. The results showed that:(1)From 1993 to 2016, the glacier area in the Gilgit River Basin had shrunk by almost 45.82±9.07 km2, which accounted for 4.07±0.80% of the total area of glaciers in 1993. Among them, average annual shrinkage rate of glacier area during the period from 1993 to 2000 was 0.19±0.02%, and the figure from 2000 to 2016 was 0.17±0.03%, which indicates that the glacier shrinkage in the study area showed a slight slowing trend in the past 15 years.(2)From 1993 to 2016, the average atrophy rate of glaciers with an area of <0.1 km2 was as high as 12.12%, while that of glaciers with an area of >10.0 km2 was only 0.38%. Although glaciers in the Gilgit River Basin were generally in a state of shrinkage, the shrinkage rate tended to be related with their orientations: glaciers facing northeastward suffered from the largest shrinkage, while those facing westward had the smallest shrinkage rate.(3)In the study area, 12 glaciers showed advancement between 1993 and 2016, among which, the glacier coded G073768E36822N had the largest advancing rate, as its glacier terminus had advanced by 477 m from 1996 to 1999 with an advancing rate of 159 m·a-1.(4)In the past 40 years, there was increasing trends in temperature over the Gilgit River Basin, while the precipitation had decreased first and then increased. Our analyses show that the rising temperature is the main cause of glacier shrinkage, while the increase in precipitation compensates for the glacier loss due to warming.

参考文献/References:

[1] GRINSTED A. An estimate of global glacier volume[J]. Cryosphere, 2013, 7(1): 141-151.
[2] SCHERLER D, BOOKHAGEN B, STRECKER M R. Spatially variable response of Himalayan glaciers to climate change affected by debris cover[J]. Nature Geoscience, 2011, 4(3): 156-159.
[3] 谢自楚,刘潮海.冰川学导论[M].上海:上海科学普及出版社,2010:1-10. [XIE Zichu, LIU Chaohai. The introduction of glaciology[M]. Shanghai: Shanghai Popular Science Press, 2010: 1-10]
[4] 蒲健辰,姚檀栋,王宁练,等.近百年来青藏高原冰川的进退变化[J].冰川冻土,2004,26(5):517-522. [PU Jianchen, YAO Tandong, WANG Ninglian, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century[J]. Journal of Glaciology and Geocryology, 2004, 26(5): 517-522]
[5] 任贾文.全球冰冻圈现状和未来变化的最新评估:IPCC WGI AR5 SPM发布[J].冰川冻土,2013,35(5):1065-1067. [REN Guwen. Updating assessment results of global cryospheric change from SPM of IPPC WGI Fifth Assessment Report[J]. Journal of Glaciology and Geocryology, 2013, 35(5): 1065-1067]
[6] DYURGEROV M B, MEIER M F. Twentieth century climate change: evidence from small glaciers[J]. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(4): 1406-1411.
[7] BRADLEY R S, VUILLE M, DIAZ H F, et al. Climate change, threats to water supplies in the tropical Andes[J]. Science, 2006, 312(5781): 1755-1756.
[8] WANG Weicai, XIANG Yang, GAO Yang, et al. Rapid expansion of glacial lakes caused by climate and glacier retreat in the Central Himalayas[J]. Hydrological Processes, 2015, 29(6): 859-874.
[9] IMMERZEEL W W, VAN BEEK L P, BIERKENS M F. Climate change will affect the Asian water towers[J]. Science, 2010, 328(5984): 1382-1385.
[10] KUANG Xingxing, JIAO J J. Review on climate change on the Tibetan Plateau during the last half century[J]. Journal of Geophysical Research-Atmospheres, 2016, 121(8): 3979-4007.
[11] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2(9): 663-667.
[12] AZAM M F, WAGNON P, BERTHIER E, et al. Review of the status and mass changes of Himalayan-Karakoram glaciers[J]. Journal of Glaciology, 2018, 64(243): 61-74.
[13] BOLCH T, KULKARNI A, KÄÄB A, et al. The state and fate of Himalayan glaciers[J]. Science(New York, N.Y.), 2012, 336(679): 310-314.
[14] BOLCH T, PIECZONKA T, MUKHERJEE K, et al. Brief communication: glaciers in the Hunza catchment(Karakoram)have been nearly in balance since the 1970s[J]. Cryosphere, 2017, 11(1): 531-539.
[15] HEWITT K. The karakoram anomaly glacier expansion and the ‘elevation effect,' Karakoram himalaya[J]. Mountain Research and Development, 2005, 25(4): 332-340.
[16] BHAMBRI R, HEWITT K, KAWISHWAR P, et al. Surge-type and surge-modified glaciers in the Karakoram[J]. Scientific Reports, 2017, 7(1): 15391.
[17] 刘凯,王宁练,白晓华.1993-2015年喀喇昆仑山努布拉流域冰川变化遥感监测[J].冰川冻土,2017,39(4):710-719. [LIU Kai, WANG Ninglian, BAI Xiaohua. Variation of glaciers in the Nubra basin,Karakoram Mountains,revealed by remote sensing images during 1993-2015[J]. Journal of Glaciology and Geocryology, 2017, 39(4): 710-719]
[18] 廖丽萍,朱颖彦,杨志全,等.中国-巴基斯坦喀喇昆仑公路Ghulkin冰川百年进退变化[J].冰川冻土,2013,35(6):1391-1399. [LIAO Liping, ZHU Yingyan, YANG Zhiquan, et al. Advance and retreat of the Ghulkin Glacier along the Karakoram Highway over hundred years[J]. Journal of Glaciology and Geocryology, 2013, 35(6): 1391-1399]
[19] ASHRAF A, NAZ R, IQBAL M B. Altitudinal dynamics of glacial lakes under changing climate in the Hindu Kush, Karakoram, and Himalaya ranges[J]. Geomorphology, 2017, 283:72-79.
[20] RAUP B, RACOVITEANU A, KHALSA S J, et al. The GLIMS geospatial glacier database: a new tool for studying glacier change[J]. Global and Planetary Change, 2007, 56(1/2): 101-110.
[21] MUHAMMAD, ADNAN, GHULAM, et al. Snowmelt runoff prediction under changing climate in the Himalayan cryosphere: A case of Gilgit River Basin[J]. Geoscience Frontiers, 2017, 8(5): 941-949.
[22] ADNAN M, NABI G, KANG Shichang, et al. Snowmelt runoff modelling under projected climate change patterns in the gilgit river basin of northern Pakistan[J]. Polish Journal of Environmental Studies, 2017, 26(2): 525-542.
[23] OWEN L A. GLACIATIONS | Late Quaternary in Highland Asia[M]. Encyclopedia of Quaternary Science, 2007:1109-1116.
[24] 张明华.基于ETM+影像的西藏南迦巴瓦峰地区海洋性冰川信息提取[J].冰川冻土,2005,27(2):226-232. [ZHANG Minghua. Extracting the temperate glacier information in the Mount Namjagbarwa,Tibet autonomous region,based on ETM+image[J]. Journal of Glaciology and Geocryology, 2005, 27(2): 226-232]
[25] GUO Wanqin, LIU Shiyin, XU Junli, et al. The second Chinese glacier inventory: data, methods and results[J]. Journal of Glaciology, 2015, 61(226):357-372.
[26] PAUL F, ANDREAS K, MAISCH M, et al. The new remote-sensing-derived Swiss glacier inventory: I. Methods[J]. Annals of Glaciology, 2002, 34(1):355-361.
[27] BOLCH T, YAO T, KANG S, et al. A glacier inventory for the western Nyainqentanglha Range and the Nam Co Basin, Tibet, and glacier changes 1976-2009[J]. Cryosphere, 2010, 4(3): 419-433.
[28] 上官冬辉,刘时银,丁永建,等.玉龙喀什河源区32年来冰川变化遥感监测[J].地理学报,2004,59(6):855-862. [SHANG GUAN Donghui, LIU Shiyin, DING Yongjian, et al. Glacier changes at the head of Yurungkax River in the West Kunlun Mountains in the past 32 Years[J]. Acta Geographica Sinica, 2004, 59(6): 855-862]
[29] 孙美平,刘时银,姚晓军,等.近50年来祁连山冰川变化--基于中国第一、二次冰川编目数据(英文)[J].Journal of Geographical Sciences,2018,70(2):206-220. [SUN Meiping, LIU Shiyin, YAO Xiaojun, et al. Glacier changes in the Qilian Mountains in the past half century: based on the revised first and second Chinese Glacier Inventory[J]. Journal of Geographical Sciences, 2018, 70(2): 206-220]
[30] 郭万钦,刘时银,许君利,等.木孜塔格西北坡鱼鳞川冰川跃动遥感监测[J].冰川冻土,2012,34(4):765-774. [GUO Wanqin, LIU Shiyin, XU Junli, et al. Monitoring recent surging of the Yulinchuan Glacier on North slopes of Muztag Range by remote sensing[J]. Journal of Glaciology and Geocryology, 2012, 34(4): 765-774]
[31] 刘时银,姚晓军,郭万钦,等.基于第二次冰川编目的中国冰川现状[J].地理学报,2015,70(1):3-16. [LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory[J]. Acta Geographica Sinica, 2015, 70(1): 3-16]
[32] NUIMURA T, SAKAI A, TANIGUCHI K, et al. The GAMDAM glacier inventory: a quality-controlled inventory of Asian glaciers[J]. Cryosphere, 2015, 9(3): 849-864.
[33] ZHANG Zhen, LIU Shiyin, ZHANG Yong, et al. Glacier variations at Aru Co in western Tibet from 1971 to 2016 derived from remote-sensing data[J]. Journal of Glaciology, 2018, 64(245): 397-406.
[34] NAIDU C V, DURGALAKSHMI K, KRISHNA K M, et al. Is summer monsoon rainfall decreasing over India in the global warming era?[J]. Journal of Geophysical Research-Atmospheres, 2009, 114: D24108.
[35] 李忠勤,韩添丁,井哲帆,等.乌鲁木齐河源区气候变化和1号冰川40a观测事实[J].冰川冻土,2003,25(2):117-123. [LI Zhongqin, HAN Tianding, JING Zhefan, et al. A summary of 40-year observed variation facts of climate and glacier no.1 at headwater of Urumqi river, Tianshan,China[J]. Journal of Glaciology and Geocryology, 2003, 25(2): 117-123]
[36] 王璞玉,李忠勤,高闻宇,等.气候变化背景下近50年来黑河流域冰川资源变化特征分析[J].资源科学,2011,33(3):399-407. [WANG Puyu, LI Zhongqin, GAO Wenyu, et al. Glacier changes in the Heihe River Basin over the past 50 years in the context of climate change[J]. Resources Science, 2011, 33(3): 399-407]
[37] DING Yongjian, LIU Shiyin, LI Jing, et al. The retreat of glaciers in response to recent climate warming in western China[J]. Annals of Glaciology, 2006, 43(1): 97-105.
[38] 王宁练,张祥松.近百年来山地冰川波动与气候变化[J].冰川冻土,1992,14(3):242-250. [WANG Ninglian, ZHANG Xiangsong. Mountain glacier fluctuations and climatic change during the last 100 years[J]. Journal of Glaciology and Geocryology, 1992, 14(3): 242-250]
[39] PAN C G, POPE A, KAMP U, et al. Glacier recession in the Altai Mountains of Mongolia in 1990-2016[J]. Geografiska Annaler Series A-Physical Geography, 2018, 100(2): 185-203.
[40] 李佳,杨太保,何毅,等.1990-2011年天山东部冰川退缩对气候的响应[J].水土保持研究,2014,21(3):212-216. [LI Jia, YANG Taibao, HE Yi, et al. Response of glacier retreat to climate in eastern tianshan from 1990 to 2011[J]. Research of Soil and Water Conservation, 2014, 21(3): 212-216]
[41] JI Qin, YANG Taibao, DONG Jun, et al. Glacier variations in response to climate change in the eastern Nyainqentanglha Range, Tibetan Plateau from 1999 to 2015[J]. Arctic Antarctic and Alpine Research, 2018, 50(1): 1-12.
[42] ZHANG Xiaowen, LI Haojie, ZHANG Zhihua, et al. Recent glacier mass balance and area changes from DEMs and landsat images in upper reach of shule river basin, northeastern edge of Tibetan plateau during 2000 to 2015[J]. Water, 2018, 10(6):796.
[43] YADAV R R, GUPTA A K, KOTLIA B S, et al. Recent wetting and glacier expansion in the northwest Himalaya and Karakoram[J]. Scientific Reports, 2017, 7(1): 6139.
[44] RIDLEY J, WILTSHIRE A, MATHISON C. More frequent occurrence of westerly disturbances in Karakoram up to 2100[J]. The Science of the Total Environment, 2013, 468-469(Suppl): S31-S35.

相似文献/References:

[1]张文敬.各拉丹冬峰东冰川冰、雪、水地球化学特征[J].山地学报,1996,(01):16.
[2]张文敬,李明,吴志根,等.四川省黑水县冰川水资源的特征与评价[J].山地学报,2002,(04):461.
[3]丁贤荣.高山增水效应及其水资源意义[J].山地学报,2003,(06):681.
[4]陈锋,康世昌,张拥军,等.纳木错流域冰川和湖泊变化对气候变化的响应[J].山地学报,2009,(06):641.
[5]李全莲,张成龙,武小波,等.中国西部冰川冰尘的粒度及矿物组成[J].山地学报,2015,(02):166.
 LI Quanlian,ZHANG Chenglong,WU Xiaobo,et al.Grain Size Distribution and Mineral Components of Cryoconites of Glaciers in Western China[J].Mountain Research,2015,(03):166.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-12-26; 改回日期(Accepted data):2019-04-09
基金项目(Foundation item):中国科学院战略性先导科技专项(XDA19070302); 中国科学院“一带一路”科技合作专项(131C11KYSB20160061)。 [“Strategic Priority Research Program” of CAS(XDA19070302); “Belt & Road” Partnership Program of CAS(131C11KYSB20160061)]
作者简介(Biography):张威(1995-),男,山东菏泽人,硕士研究生,主要研究方向:冰川与气候变化。[ZHANG Wei(1995-), male, born in Heze, Shandong province, M.Sc. candidate, research on glacier and climate change] E-mail:zhangwei1995@stumail.nwu.edu.cn
*通讯作者(Corresponding author):王宁练(1966-),男,博士,教授,研究方向:冰冻圈与全球变化。[WANG Ninglian(1966-), male, Ph.D., professor, research on cryosphere and global change] E-mail: nlwang@nwu.edu.cn
更新日期/Last Update: 2019-05-30