[1]胡晓波a,樊晓一a,b*,等.沟道偏转地形对滑坡碎屑流运动的影响研究[J].山地学报,2019,(03):371-381.[doi:10.16089/j.cnki.1008-2786.000430]
 HU Xiaoboa,FAN Xiaoyia,b*,et al.Influence of Channel Deflection on the Movement of A flowing Landslide[J].Mountain Research,2019,(03):371-381.[doi:10.16089/j.cnki.1008-2786.000430]
点击复制

沟道偏转地形对滑坡碎屑流运动的影响研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年03期
页码:
371-381
栏目:
山地灾害
出版日期:
2019-07-20

文章信息/Info

Title:
Influence of Channel Deflection on the Movement of A flowing Landslide
文章编号:
1008-2786-(2019)3-371-11
作者:
胡晓波a樊晓一ab*田述军ab
西南科技大学 a.土木工程与建筑学院; b.工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621000
Author(s):
HU Xiaoboa FAN Xiaoyiab* TIAN Shujunab
a. School of civil engineering and architecture; b. Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province. Southwest University of Science and Technology, Mianyang 621000,Sichuan, China
关键词:
沟道偏转地形 运动偏转 耗能模型 高速远程滑坡 离散元模拟
Keywords:
deflection channel terrain deflection movement energy model high-speed remote landslide discrete element simulation
分类号:
P 642.22
DOI:
10.16089/j.cnki.1008-2786.000430
文献标志码:
A
摘要:
在沟谷地形中,滑坡碎屑流的运动常受到地形的影响,导致其运动方向发生改变,进而影响到滑坡运动速度和堆积特征。本文利用三维离散元素法,对四川都江堰三溪村高速远程滑坡进行模拟,研究滑坡体不同部位的块体失稳后,在沟道偏转地形主导下的滑坡碎屑流前缘的运动速度、各部位滑体的速度变化过程和堆积特征,并提出沟道偏转地形耗能模型分析了地形偏转造成的动能消耗。研究结果显示:滑坡前缘在地形偏转位置运动方向发生变化,导致运动速度突降; 由于滑坡不同部位的滑块相对于地形偏转点具有不同的撞击角度,导致其撞击后产生不同的偏转角度,滑块的偏转角度越大,速度变化越大; 由沟道偏转地形导致的滑坡运动速度减小反映了偏转地形对滑坡的动能产生的耗散,动能耗散率与cos2θ(θ为偏转地形在水平面上的偏转角度)成反比; 不同部位滑块的堆积长度随偏转角度的增大而减小。本研究分析了沟谷地形偏转对滑坡碎屑流运动速度作用机制及不同部位岩土体堆积范围的影响,可为该类地形条件下滑坡的运动机制研究和防灾减灾工作提供参考。
Abstract:
In the gully terrain, the movements of flowing landslide are often affected by local relief, resulting in a change in the direction of motion, which in turn affects the speed and accumulation characteristics of the landslide. In this paper, three-dimensional Particle Flow Code(PFC3D)was used to simulate a high-speed long-distance landslide at Sanxi Village, Dujiangyan City, Sichuan Province. After numerically investigation on the instability at different parts of the landslide body, it analyzed the movement speed of the leading edge of the landslide subjected to channel deflection, the process of speed change in each sliding part and the associated accumulation formation. Then a terrain deflection channel energy model was introduced to analyze the kinetic energy consumption caused by terrain deflection. Results showed that the front edge of the flowing landslide changed in the directions of movements at the places with terrain deflection in gully, resulting in a sudden drop in speed; Since the sliders at different parts of the landslide had different impact angles with respect to turning points of terrain, it generated a varied of deflection angles in movement after it hit the points; The larger the deflection angle, the greater change in velocity took place for a slider; The dissipation of landslide motion energy because of channel deflection can interpret the decrease in movement speed, and the dissipation rate was inversely proportional to cosθ(θ is horizontal deflection angle); The stacking length of a slider at different parts of the landslide decreased with the increase in deflection angle. In this study it conducted a research on the leading role of terrain deflection in governing the behavior of flowing landslide in a gully as well as its influence range on sliders at different parts of the landslide. It could provide reference for study of the movement mechanism of flowing landslides in the similar topographical conditions as well as for engineering in disaster prevention and mitigation.

参考文献/References:

[1] 刘传正.论崩塌滑坡-碎屑流高速远程问题[J].地质论评,2017,63(6):1563-1575.[LIU Chuanzheng. Research on high speed and long-distance of the avalanches or landslide-debris streams[J]. Geological Review, 2017, 63(6):1563-1575]
[2] 程谦恭,张倬元,黄润秋.高速远程崩滑动力学的研究现状及发展趋势[J].山地学报,2007,25(1):72-84.[CHENG Qiangong, ZHANG Zhuoyuan, HUANG Runqiu. Study on dynamics of rock avalanches: state of the art report[J]. Mountain Research, 2007, 25(1):72-84]
[3] HEIM A. Der Bergsturz von Elm[J]. Deutsch Geol Gesell Zeitschr, 1882, 34(1): 74-115.
[4] 张明,殷跃平,吴树仁,等.高速远程滑坡-碎屑流运动机理研究发展现状与展望[J].工程地质学报,2010,18(6):805-817.[ZHANG Ming,YIN Yueping, WU Shuren, et al. Development status and prospects of studies on kinematics of long runout rock avalanches[J]. Journal of Engineering Geology, 2010, 18(6):805-817]
[5] 殷志强,徐永强,赵无忌.四川都江堰三溪村“7·10”高位山体滑坡研究[J].工程地质学报,2014,22(2):309-318.[YIN Zhiqiang, XU Yongqiang, ZHAO Wuji. Sanxi village landslide in dujiangyan, sichuan province on July 10,2013[J]. Journal of Engineering Geology, 2014, 22(2):309-318]
[6] YIN Yueping, CHENG Yuliang, LIANG Jingtao, et al. Heavy-rainfall induced catastrophic rockslide-debris flow at Sanxicun, Dujiangyan, after the Wenchuan Ms.8.0 earthquake[J]. Landslides, 2016,13(1): 9-23.
[7] 王佳运,张茂省,贾俊,等.都江堰中兴镇高位滑坡泥石流灾害致灾成因与发展趋势[J].西北地质,2014,47(3):157-164.[WANG Jiayun, ZHANG Maosheng, JIA Jun, et al. The cause and development of the high-locality landslide and debris flow disaster of Zhongxing town, Dujiangyan city[J]. Northwestern Geology, 2014, 47(3): 157-164]
[8] 温铭生,方志伟,王阳谷.都江堰市五里坡特大滑坡灾害特征与致灾成因[J].现代地质,2015,29(2):448-453.[WEN Minsheng, FANG Zhiwei, WANG Yanggu. Characteristics and disaster causes of Wulipo landslide in Dujiangyan city[J]. Geoscience, 2015, 29(2): 448-453]
[9] 樊晓一,冷晓玉,段晓冬.坡脚型与偏转型地震滑坡运动距离及地形因素作用[J].岩土力学,2015,36(5):1380-1388.[FAN Xiaoyi, LENG Xiaoyu, DUAN Xiaodong. Influence of topographical factors on movement distances of toe-type and turning-type landslides triggered by earthquake[J]. Rock and Soil Mechanics, 2015, 36(5):1380-1388]
[10] 孙萍,张永双,殷跃平,等.东河口滑坡-碎屑流高速远程运移机制探讨[J].工程地质学报,2009,17(6):737-744.[SUN Ping, ZHANG Yongshuang, YIN Yueping. Discussion on long run-out sliding mechanism of Donghekou landslide-debris flow[J]. Journal of Engineering Geology, 2009, 17(6): 737-744]
[11] 孔纪名,崔云,田述军,等.地震碎裂滑动型滑坡发育特点及典型实例分析[J].工程科学与技术,2009,41(3):119-124.[KONG Jiming, CUI Yun, TIAN Shujun, et al. Typical case study on the development characteristics of fragmentation-sliding seismic landslide[J]. Advanced Engineering Sciences, 2009 41(3):119-124]
[12] 王涛,石菊松,吴树仁,等.汶川地震触发文家沟高速远程滑坡-碎屑流成因机理分析[J].工程地质学报,2010,18(5):631-644.[WANG Tao, SHI Jusong, WU Shuren, et al. Formation mechanism of Wenjiagou high-speed and long-runout debris avalanche triggered by Wenchuan earthquake[J]. Journal of Engineering Geology, 2010, 18(5):631-644]
[13] 赵运会,樊晓一,王海瓜,等.偏转型滑坡滑动与堆积影响因素研究[J].人民长江,2017,48(3):48-52.[ZHAO Yunhui, FAN Xiaoyi, WANG Haigua, et al. Study on influential factors on movement and accumulation of turning-type landslide[J]. Yangtze River, 2017,48(3):48-52]
[14] 杨海龙,樊晓一,赵运会,等.偏转角度对滑坡-碎屑流运动影响的模型试验[J].山地学报,2017,35(3):316-322.[YANG Hailong, FAN Xiaoyi, ZHAO Yunhui, et al. Model tests on influence of deflection angle on the movement of landslide-debris avalanches[J]. Mountain Research, 2017, 35(3):316-322]
[15] 杜国梁,张永双,姚鑫,等.都江堰市五里坡高位滑坡-碎屑流成因机制分析[J].岩土力学,2016,37(s2):493-501.[DU Guoliang, ZHANG Yongshuang, YAO Xin, et al. Formation mechanism analysis of Wulipo landslide-debris flow in Dujiangyan city[J]. Rock & Soil Mechanics, 2016, 37(s2):493-501]
[16] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Geotechnique, 1979, 29(1): 47-65.
[17] ITASCA. PFC3D(Particle Flow Code in 3 Dimensions)version 5.0[Z]. Minneapolis, MN, USA: Itasca Consulting Group Inc, 2018: 205-215.,
[18] TANG C L, HU J C, LIN Ming-lang, et al. The tsaoling landslide triggered by the Chi-Chi earthquake, Taiwan: insights from a discrete element simulation[J]. Engineering Geology, 2009, 106(1/2): 1-19.
[19] LO C M, LIN Minglang, TANG C L, et al. A kinematic model of the Hsiaolin landslide calibrated to the morphology of the landslide deposit[J]. Engineering Geology, 2011, 123(1/2, SI): 22-39.
[20] ZHOU Jiawen, HUANG Kangxin, SHI Chong, et al. Discrete element modeling of the mass movement and loose material supplying the gully process of a debris avalanche in the Bayi Gully, Southwest China[J]. Journal of Asian Earth Sciences, 2015, 99: 95-111.
[21] CHANG K J, TABOADA A. Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake, Taiwan[J]. Journal of Geophysical Research-Earth Surface, 2009, 114(F04099).
[22] 常士骠. 工程地质手册:第4版[K]. 北京:中国建筑工业出版社, 2007: 167-168. [Chang Shibiao, Engineering geological manual: 4th ed.[K]. Beijing: China Building Industry Press, 2007:167-168]
[23] 林志红,项伟,张云明.湘西红砂岩基本物理指标和微结构参数对其强度影响的试验研究[J].岩石力学与工程学报,2010,29(1):124-133.[LIN Zhihong, XIANG Wei, ZHANG Yunming. Experimental research on influences of physical indices and microstructure parameters on strength properties of red stone from Western Hunan[J]. Chinese Journal of Rock Mechanics & Engineering, 2010, 29(1):124-133]
[24] CROSTA G B, CHEN H, LEE C F. Replay of the 1987 Val Pola Landslide, Italian Alps[J]. Geomorphology, 2004,60(1): 127-146.
[25] PIRULLI M, MANGENEY. Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology[J]. Rock Mechanics and Rock Engineering, 41(1):59-84.
[26] LI Weichao, LI Hongjie, DAI F C, et al. Discrete element modeling of a rainfall-induced flowslide[J]. Engineering Geology, 2012, 149(4): 22-34.
[27] LUO Yu, LIU Wei, HE Siming, et al. Dynamic process simulation of rainfall-induced Sanxicun landslide based on a thermo-poro-elastic approach[J]. Natural Hazards, 2018, 92(1): 415-428.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-08-04; 修回日期(Accepted data): 2019-06-23
基金项目(Foundation item):国家自然科学基金项目(41877524, 41401195); 西南科技大学研究生创新基金资助(19ycx0081)。 [National Natural Science Foundation of China(41877524, 41401195); Postgraduate Innovation Fund Project by Southwest University of Science and Technology(19ycx0081)]
作者简介(Biography):胡晓波(1993-),男,硕士研究生,研究方向为地质灾害。[HU Xiaobo(1993-), male, M. Sc. candidate,research on geological disaster]E-mail: dzhxb@qq.com
*通讯作者(Corresponding author):樊晓一(1974-),男,博士,教授,主要从事岩土工程及地质灾害方面的教学与研究工作。[FAN Xiaoyi(1974-), male, Ph.D, professor, research directions for geological hazard and geotechnical engineering]E-mail: xyfan1003@126.com
更新日期/Last Update: 2019-05-30