[1]周 琪,许 强*,周 书,等.基于数值模拟的突发型黄土滑坡运动过程研究--以黑方台陈家8#滑坡为例[J].山地学报,2019,(04):528-537.[doi:10.16089/j.cnki.1008-2786.000445]
 ZHOU Qi,XU Qiang*,ZHOU Shu,et al.Movement Process of Abrupt Loess Flowslide Based on Numerical Simulation--A Case Study of Chenjia 8# on the Heifangtai Terrace[J].Mountain Research,2019,(04):528-537.[doi:10.16089/j.cnki.1008-2786.000445]
点击复制

基于数值模拟的突发型黄土滑坡运动过程研究--以黑方台陈家8#滑坡为例()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年04期
页码:
528-537
栏目:
山地灾害
出版日期:
2019-07-30

文章信息/Info

Title:
Movement Process of Abrupt Loess Flowslide Based on Numerical Simulation--A Case Study of Chenjia 8# on the Heifangtai Terrace
文章编号:
1008-2786-(2019)4-528-10
作者:
周 琪1许 强1*周 书2彭大雷1周小棚1亓 星3
1.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059; 2.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 3.四川轻化工大学 土木工程学院,四川 自贡 643000
Author(s):
ZHOU Qi1 XU Qiang1* ZHOU Shu1 PENG Dalei1 ZHOU Xiaopeng1 Qi Xing1
1. Chengdu University of Technology, State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu 610059, China; 2. Chinese Academy of Sciences, Institute of Mountain Hazards and Environment, Chengdu 610041, China; 3. Sichuan University of Science & Engineering, College of Civil Engineering, Zigong 643000, Sichuan, China
关键词:
突发性 Massflow 参数反演 数值模拟吻合率 黑方台
Keywords:
sudden characteristics massflow parameter inversion simulation accuracy Heifangtai terrace
分类号:
P694~A
DOI:
10.16089/j.cnki.1008-2786.000445
摘要:
甘肃省黑方台地区农业灌溉诱发大量的静态液化型滑坡,此类滑坡失稳前变形迹象小、启动速度快、运移距离远,具有显著的突发特征并严重威胁到当地居民的生命财产安全。目前对突发型滑坡的运动过程,主要集中在定性和半定量研究方面,缺乏合理的定量研究。本文选取黑方台地区典型的陈家8#突发型滑坡,采用Massflow数值模拟软件对该滑坡进行反演,依据滑距及堆积范围吻合率定量判断反演结果的准确度,利用最优的吻合结果来分析滑坡启动后不同时刻的堆积厚度和运动速度,得出如下结论:(1)对于陈家8#滑坡,当内聚力为1000 Pa、内摩擦角为31°、基底液化系数为0.63时,滑距与堆积范围吻合率分别为0.94和0.89,反演获得的滑坡堆积范围与真实堆积非常接近。(2)数值模拟结果显示,滑坡主滑方向的平均厚度约1.20 m,最大堆积厚度约4.10 m,反演结果与真实堆积厚度较为吻合,后缘高差与滑距之比为0.05,体现此类滑坡较强的流态特征。(3)滑坡的运动过程可分为启动加速、稳定加速、减速堆积三个阶段,陈家8#滑坡从启动到最终静止整个过程仅用42 s,最大运动速度介于15 m/s至20.30 m/s之间,启动加速阶段时间仅占滑坡运动总时间的12.85%,而减速堆积阶段占滑坡运动总时间的77.38%,进一步表明其流态特性,体现该类滑坡较强的破坏性。
Abstract:
Agricultural irrigation induces a large number of loess flowslides on the Heifangtai terrace, Gansu province, China. Most of the failures exhibit fluidized movement with long runout, high speed and significant sudden characteristics, which seriously threaten the lives and properties of local residents. At present, the movement process of loess flowslides is mostly in qualitative and semi-quantitative research, lacking reasonable quantitative research. In this paper, Chenjia 8# loess flowslide on the Heifangtai terrace had been taken as a case study and the back-analyses of failure process was simulated by a numerical modelling software - Massflow. The accuracy of the back-analysis results was quantitatively determined by the coincidence rates of run-out distances and accumulation range between the field investigation and simulation results, and the optimal coincidence results were applied to analyze the failure process of the typical loess flowslide in terms of the accumulation thickness and movement velocity at different time. By this research, it found that:(1)for the Chenjia 8# loess flowslide, when cohesion, internal friction angle, and pore pressure ration were 1000 Pa, 31°, and 0.63, respectively, the coincidence rates of run-out distances and accumulation range were 0.94 and 0.89, respectively. The landslide accumulation boundary obtained by the back-analysis approach was closest to the result of the field investigation.(2)According to the results of numerical simulation, the average thickness of the main sliding direction of the loess flowslide was approximately 1.20 m, the maximum cumulative thickness was approximately 4.10 m, and the ratio of height difference to slip distance was 0.05. The back-analysis results were in good agreement with the field accumulated thickness, which reflected the strong flow characteristics of loess flowslide.(3)The movement process of loess flowslide could be divided into three stages, such as initial acceleration, constant acceleration and decelerative accumulation. The whole process of Chenjia 8# landslide from initiation to final rest was only 42 s, and the maximum speed was between 15 m/s and 20.30 m/s. The initial acceleration phase only accounted for 12.85% of the total landslide movement time, while the decelerative accumulation phase accounted for 77.38% of the total landslide movement time, further indicating its fluidity characteristics and the strong destructive nature of the landslide.

参考文献/References:

[1] PENG Dalei, XU Qiang, QI Xing, et al. Hydrological response of loess slopes with reference to widespread landslide events in the Heifangtai terrace, NW China[J]. Journal of Asian Earth Sciences, 2019, 171:259-276.
[2] 许强,彭大雷,李为乐,等.溃散性滑坡成因机理初探[J].西南交通大学学报, 2016, 51(5): 995-1004.[XU Qiang, PENG Dalei, LI Weile, et al. Study on formation mechanism of diffuse failure landslide[J]. Journal of Southwest Jiaotong University, 2016, 51(5): 995-1004]
[3] XU Qiang, LI Huajin, HE Yusen, et al. Comparison of data-driven models of loess landslide runout distance estimation[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(2): 1281-1294.
[4] 许强,彭大雷,亓星,等.2015年4.29甘肃黑方台党川2#滑坡基本特征与成因机理研究[J].工程地质学报, 2016, 24(2): 167-180. [XU Qiang, PENG Dalei, QI Xing, et al. Dangchuan 2# landslide of April 29, 2015 in Heifangtai area of Gansu province: characteristics and failure mechanism[J]. Journal of Engineering Geology, 2016, 24(2): 167-180]
[5] 曹从伍,许强,彭大雷,等.基于物理模拟实验的黑方台黄土滑坡破坏机理研究[J].水文地质工程地质, 2016, 43(4): 72-77. [CAO Congwu, XU Qiang, PENG Dalei, et al. Research on the failure mechanism of the Heifangtai loess landslides based on the physical simulation experiments[J]. Hydrogeology & Engineering Geology, 2016, 43(4): 72-77]
[6] 裴向军,张硕,黄润秋,等.地下水雍高诱发黄土滑坡离心模型试验研究[J].工程科学与技术, 2018, 50(5): 55-63. [PEI Xiangjun, ZHANG Shuo, HUANG Runqiu, et al. Study on centrifuge model test of loess landslide induced by enrichment of groundwater[J]. Advanced Engineering Science, 2018, 50(5): 55-63]
[7] 唐昭荣,袁仁茂,胡植庆,等.台湾集集地震九份二山滑坡发生机制的三维数值模拟分析[J].工程地质学报, 2012, 20(6): 940-954. [TANG Zhaorong, YUAN Renmao, HU Zhiqing, et al. 3-d distinct element modeling of sliding process and depositing behavior in jiufengershan landslide induced by 1999 Taiwan chi-chi earthquake[J]. Journal of Engineering Geology, 2012, 20(6): 940-954]
[8] 刘兴宁,石崇,李德杰,等.争岗滑坡堆积体滑坡灾害数值模拟预测分析[J].科学技术与工程, 2015, 15(1): 1-7. [LIU Xingning, DAN Chong, LI Dejie, et al. Numerical analysis and hazard prediction of zhenggang outwash landslide congeries[J]. Science Technology and Engineering, 2015, 15(1): 1-7]
[9] 高杨,李滨,王国章.鸡尾山高速远程滑坡运动特征及数值模拟分析[J].工程地质学报, 2016, 24(3): 425-434. [GAO Yang, LI Bin, WANG Guozhang. Motion feature and numerical simulation analysis of Jiweishan landslide with rapid and long run-out[J]. Journal of Engineering Geology, 2016, 24(3): 425-434]
[10] 张远娇,邢爱国,朱继良.汶川地震触发牛圈沟高速远程滑坡-碎屑流动力学特性分析[J].上海交通大学学报, 2012, 46(10): 1665-1670. [ZHANG Yuanjiao, XING Aiguo, ZHU Jiliang. Dynamics analysis of Niujuangou rockslide-debris avalanche triggered by the Wenchuan earthquake[J]. Journal of Shanghai Jiaotong University, 2012, 46(10): 1665-1670]
[11] 罗锋,柴波,方恒,等.顺层岩质滑坡运动过程数值模拟研究[J].水文地质工程地质, 2016, 43(3): 124-130. [LUO Feng, CHAI Bo, FANG Heng, et al. Numerical simulation of the bedding rock landslide motion process[J]. Hydrogeological Engineering Geology, 2016, 43(3): 124-130]
[12] OUYANG C, HE Siming, XU Qiang, et al. A MacCormack-TVD finite difference method to simulate the mass flow in mountainous terrain with variable computational domain[J]. Computers & Geosciences, 2013, 52:1-10.
[13] STEFFLER P M, JIN Y C. Depth averaged and moment equations for moderately shallow free-surface flow[J]. Journal of Hydraulic Research, 1993, 31(1): 5-17.
[14] OUYANG C, HE Siming, TANG Chuan. Numerical analysis of dynamics of debris flow over erodible beds in Wenchuan earthquake-induced area[J]. Engineering Geology, 2015, 194: 62-72.
[15] OUYANG Chaojun, ZHOU Kaiqi, XU Qiang, et al. Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China[J]. Landslides, 2017, 14(2): 705-718.
[16] SCARINGI G, FAN Xuanmei, XU Qiang, et al. Some considerations on the use of numerical methods to simulate past landslides and possible new failures: the case of the recent Xinmo landslide(Sichuan, China)[J]. Landslides, 2018, 15(7): 1359-1375.
[17] 亓星,许强,李斌,等.甘肃黑方台黄土滑坡地表水入渗机制初步研究[J].工程地质学报, 2016, 24(3): 418-424. [QI Xing, XU Qiang, LI Bin, et al. Preliminary study on mechanism of surface water infiltration at Heifangtai loess landslides in Gansu[J]. Journal of Engineering Geology, 2016, 24(3): 418-424]
[18] 张先林,许强,彭大雷,等.高密度电法在黑方台地下水探测中的应用[J].地球物理学进展, 2017, 32(4): 1862-1867. [ZHANG Xianlin, XU Qiang, PENG Dalei, et al. Application of high-density resistivity method to groundwater exploration in Heifangtai[J]. Progress in Geophysics, 2017, 32(4): 1862-1867]
[19] 巨袁臻,许强,彭大雷,等.黑方台焦家4号黄土滑坡发育特征及滑动机理[J]. 人民长江, 2017, 48(11): 62-67,91. [JU Yuanzhen, XU Qiang, PENG Dalei, et al. Development characteristics and sliding mechanism of Jiaojia No.4 loess landslide at Heifangtai table-land in Gansu Province[J]. Yangtze River, 2017, 48(11): 62-67, 91]
[20] 李姝,许强,张立展,等. 黑方台地区黄土强度弱化的浸水时效特征与机制分析[J]. 岩土力学, 2017, 38(7): 2043-2048, 2058. [LI Shu, XU Qiang, ZHANG Lizhan, et al. Time effect and mechanism of strength weakening of loess soaked in water in Heifangtai area[J]. Rock and Soil Mechanics, 2017, 38(7): 2043-2048, 2058]
[21] 周飞.甘肃省黑方台黄土斜坡变形特征与滑坡机理研究[D].成都:成都理工大学, 2015:73-80. [ZHOU Fei. Study on the deformation characteristics of loess slope and mechanism of landslide in Heifangtai, Gansu province[D]. Chengdu: Chengdu University of Technology, 2015: 73-80]
[22] 亓星,许强,朱星,等.甘肃黑方台陈家8静态液化型黄土滑坡变形特征及成因机理[J].地质科技情报, 2018, 37(5): 234-239. [QI Xing, XU Qiang, ZHU Xing, et al. Deformation characteristics and formation mechanism of static liquefaction No.8 loess landslide in Chenjia, Heifangtai, Gansu province[J]. Geological Science and Technology Information, 2018, 37(5): 234-239]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-05-06; 改回日期(Accepted date):2019-08-13
基金项目(Foundation item):国家自然科学基金(41630640,41790445)[National Natural Science Foundation of China(41630640, 41790445)]
作者简介(Biography):周琪(1994-),男,硕士研究生,主要从事地质灾害研究。[ZHOU Qi(1994-), male, M.Sc. candidate, research on geological disaster] E-mail:chow77@foxmail.com
更新日期/Last Update: 2019-07-30