[1]熊 江,唐 川*,史青云,等.强震区泥石流物源演化特征分析[J].山地学报,2019,(05):728-736.[doi:10.16089/j.cnki.1008-2786.000463]
 XIONG Jiang,TANG Chuan*,SHI Qingyun,et al.Evolution Characteristics of Debris Flow Sources in Strong Earthquake Area[J].Mountain Research,2019,(05):728-736.[doi:10.16089/j.cnki.1008-2786.000463]
点击复制

强震区泥石流物源演化特征分析()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2019年05期
页码:
728-736
栏目:
山地灾害
出版日期:
2019-09-30

文章信息/Info

Title:
Evolution Characteristics of Debris Flow Sources in Strong Earthquake Area
文章编号:
1008-2786-(2019)5-728-09
作者:
熊 江唐 川*史青云龚凌枫
成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059
Author(s):
XIONG Jiang TANG Chuan* SHI Qingyun GONG Lingfeng
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059,China
关键词:
泥石流 物源演化 水系理论 物源密度 物源连接度
Keywords:
debris flow source evolution water system theory source density source connectivity
分类号:
P642.23~A
DOI:
10.16089/j.cnki.1008-2786.000463
摘要:
探讨震区泥石流物源演化特征是进一步揭示泥石流物源供给条件和演化阶段划分的基础,为探究强震区泥石流物源演化特征,本文将物源分为4级,利用ArcGIS软件对4期影像进行详细解译,并基于流域水系理论和方法计算物源面积、密度和连接度。在此基础上探讨泥石流物源演化特征,结果表明:四期影像物源解译面积分别为10.91 km2、12.34 km2、12.70 km2和9.71 km2,增长率分别为13%、3%和-24%,物源数量分别为1516处、1751处、1943处和1853处,增长率为16%、11%、-5%; 物源面积以二次函数模式演化,于2012年前后物源面积增加到最大值,且经过近十年恢复,物源面积较震初减少了11%,物源数量增加了22%; 一级物源密度、二级物源密度、三级物源密度以二次函数形式先增大后减小,而其他物源密度以指数形式逐渐减小; 物源连接度随时间增长呈现出先增大后减少趋势; 根据物源面积、物源密度和物源连接度变化规律将物源演化过程大致划分为四个阶段。研究结果对于进一步研究震区泥石流物源演化具有一定参考意义。
Abstract:
A strong earthquake usually cause a large number of landslide deposits on steep slope, which providing sufficient materials for debris flow initiation. Under the action of rain and gravity, these materials may mitigate to the branch and translate to debris flow gully. However, with the stability of source increasing, a large amount of materials are translated out mountain outlets and vegetation restoration, the number and area of source will change over time. Also, evolution characteristics of debris flow source are the basis for further revealing the sediment supplying and evolution stages division. In order to explore the evolution characteristics of debris flow source in strong earthquake area, the sources were divided into four types, such as primary source(deposit in channel of debris flow gully), secondary source(deposit in tributary of debris flow gully), tertiary source(deposit on steep slop that along the tributary)and other sources(deposit on steep slop that along the main channel). Four-phase images were interpreted by ArcGIS software, and the source area, density and connectivity were calculated based on the theory and method of watershed water system. According to analyze, the following conclusions were summarized. The source areas of the four stage images were 10.91 km2, 12.34 km2, 12.70 km2, 9.71 km2, respectively, with the growth rate of 13%, 3%, and -24%, respectively; The numbers of source were 1516, 1751, 1943, 1853, and the growth rate were 16%, 11%, -5%, respectively; The source area evolves as a quadratic function, and increasing to the maximum value around 2012. After nearly a decade of recovery, The source area decreasing by 11% compare with the beginning of the earthquake, and the number of sources increases by 22%; The density of primary source, secondary source and tertiary source increases firstly and then decrease in the form of quadratic function. The density of other source decreases gradually as an exponential function. The source connectivity increases first and then decreases over time. According to the evolve laws of source area, density and connectivity, the evolution process of the source were roughly divided into four stages. The research results provide a reference for further study of the evolution of debris source in the earthquake zone.

参考文献/References:

[1] 许冲, 徐锡伟. 2008年汶川地震导致的斜坡物质响应率及其空间分布规律分析[J]. 岩石力学与工程学报, 2013, 32(S2):3888-3908. [XU Chong, XU Xiwei. Response rate of seismic slope mass movements related to 2008 wenchuan earthquake and its spatial distribution analysis [J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3888-3908]
[2] 黄润秋, 李为乐. 汶川地震触发崩塌滑坡数量及其密度特征分析[J]. 地质灾害与环境保护, 2009, 20(3): 1-7. [HUANG Runqiu, LI Weile. Analysis on the number and density of landslides triggered by the 2008 Wenchuan earthquake, China [J]. Journal of Geological Hazards and Environment Preservation, 2009, 20(3): 1-7]
[3] 黄润秋. 汶川地震地质灾害后效应分析[J]. 工程地质学报, 2011, 19(2): 145-151. [HUANG Runqiu. After effect of geohazards induced by the wenchuan earthquake[J]. Journal of Engineering Geology, 2011, 19(2): 145-151]
[4] 唐川. 汶川地震区暴雨滑坡泥石流活动趋势预测[J]. 山地学报, 2010, 28(3): 341-349. [TANG Chuan. Activity tendency prediction of rainfall induced landslides and debris flows in the wenchuan earthquake areas [J]. Mountain Research, 2010, 28(3): 341-349]
[5] 唐川, 丁军, 梁京涛. 汶川震区北川县城泥石流源地特征的遥感动态分析[J].工程地质学报, 2010, 18(1): 1-7. [TANG Chuan, DING Jun, LIANG Jingtao. Remote sensing images based observationnal analysis on characters of debris flow source areas in beichuan county of wenchuan earthquake epicenter region[J]. Journal of Engineering Geology, 2010, 18(1): 1-7]
[6] 常鸣, 唐川, 蒋志林, 等. 强震区都江堰市龙池镇泥石流物源的遥感动态演变[J]. 山地学报, 2014, 32(1): 89-97. [CHANG Ming, TANG Chuan, JIANG Zhilin, et al. Dynamic evolution process of sediment supply for debris flow occurrence in longchi of dujiangyan, wenchuan earthquake area [J]. Mountain Research, 2014, 32(1): 89-97]
[7] 姚维益, 常鸣, 李为乐. 都江堰龙溪河流域典型泥石流物源演化特征遥感监测[J]. 水土保持研究, 2018, 25(3): 205-209+2. [YAO Weiyi, CHANG Ming, LI Weile. Dynamic evvolution characteristics of material of typical debris flow using remote sensing technology, in longxi catchment, dujiangyan, China [J]. Journal of Soil and Water Conservation, 2018, 25(3): 205-209+2]
[8] 胡凯衡, 李泳, 韦方强. 泥石流流域集水区面积限值与一级水系数目关系[J]. 地理科学, 2005,(4): 91-95. [HU KaiHeng, LI Yong, WEI Fangqiang. Relationship between firstorder stream number and area threshold for debris flow basin [J]. Scientia Geographical Sinica, 2005,(4): 91-95]
[9] 何隆华, 赵宏. 水系的分形维数及其含义[J]. 地理科学, 1996,(2): 124-128. [HE Longhua, ZHAO Hong. The fractal dimension of river networks and its interpretation [J]. Scientia Geographica Sinica, 1996,(2): 124-128]
[10] 张晨, 陈剑平, 王清, 等. 基于分形理论和流域水系分布特征的泥石流研究[J]. 水利学报, 2011, 42(3): 351-356. [ZHANG Chen, CHEN Jianping, WANG Qing, et al. Study on debris flow based on fractal theory and characteristics of water system [J]. Shuili Xuebao, 2011, 42(3): 351-356]
[11] 张晨, 陈剑平, 王清, 等. 基于水系三维模型及分形理论对泥石流活动强度的研究[J] 岩石力学与工程学报, 2010, 29(6): 1214-1221.[ZHANG Chen, CHEN Jianping, WANG Qing, et al. Study of activity intensity of debris flow based on three dimensional drainage system model and fractal theory[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(6): 1214-1221]
[12] Gregoretti C, Degetto M, Bernard M, et al. Runoff of small rocky headwater catchments: field observations and hydrological modeling[J]. Water Resources Research, 2016, 52, 8138-8158.
[13] 吕慧华, 周峰, 李娜, 等. 苏北里下河典型区河网水系演变特征研究[J]. 长江流域资源与环境, 2018, 27(2): 380-385. [LYU Huihua, ZHOU Feng, LI Na, et al. Evolution characteristics of the river network in the typical area of lixiahe region [J]. Resources and Environment in the Yangtze Basin, 2018, 27(2): 380-385]
[14] 周峰, 吕慧华, 刘长运. 江苏里下河平原城镇化背景下河网水系变化特征分析[J]. 南水北调与水利科技, 2018, 16(1): 144-150. [ZHOU Feng, LYU Huihua, LIU Changyun. Change of river system in the Lixiahe region during urbanization [J]. South-to-North Water Transfer and Water Conservancy Technology, 2018, 16(1): 144-150]
[15] 向国萍, 张丹丹, 常鸣, 等. 七盘沟堰塞体溃决后水动力特征及沟内泥石流启动条件分析[J]. 水电能源科学, 2015, 33(4): 143-146. [XIANG Guo ping, ZHANG Dandan, CHANG Ming, et al. Hydrodynamic and debris flow triggering conditions after dam break in Qipangou gully [J]. Water Resources and Power, 2015, 33(4): 143-146]
[16] 曾超, 崔鹏, 葛永刚, 等. 四川汶川七盘沟“7·11”泥石流破坏建筑物的特征与力学模型[J]. 地球科学与环境学报, 2014, 36(2): 81-91. [ZHENG Chao, CUI Peng, GE Yonggang, et al. Characteristics and mechanism of building damaged by debris flow on 11 July, 2013 in Qipangou of Wenchuan, Sichuan [J]. Journal of Earth Sciences and Environment, 2014, 36(2): 81-91]
[17] 杨秀元, 蔡玲玲, 田运涛. 四川汶川七盘沟泥石流现状与危险性评价[J]. 人民长江, 2014, 45(S1): 60-63. [YANG Xiuyuan, CAI Lingling, TIAN Yuntao. The present risk assessment of debris flow in Qipan Gully, Wenchuan, Sichuan [J]. Yangtze River, 2014, 45(S1): 60-63]
[18] 朱书凡. 基于遥感影像分块提取地物方法的研究[D].西安科技大学, 2014.[ZHU Shufan. Research on the extraction of terrain block feature based on remote sensing image [D]. Xi'an University of Science and Technology, 2014]
[19] 蒋志林. 基于RS的震区泥石流物源演化特征分析[D]. 成都理工大学, 2014,26-34.[JIANG Zhilin. Research on the materials evolution characteristics of debris flows based on RS in earthquake area-case study in yingxiu area of wenchuan in Sichuan Province[D]. Chengdu University of Technology, 2014,26-34]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(05):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(05):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(05):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(05):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(05):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(05):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(05):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(05):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(05):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(05):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2018-08-09; 改回日期(Accepted data):2018-11-20
基金项目(Foundation item):国家重点研发计划项目(2017YFC1501004); 国家自然科学基金项目(41672299)。[ National Key Basic Research and Development Program of China(2017YFC1501004); National Natural Science Foundation of China(41672299)]
作者简介(Biography):熊江(1991-),男,四川泸州人,硕士研究生,主要从事地质灾害防治方面研究。[XIONG Jiang(1991-), male, was born in Luzhou, Sichuan Province, M. Sc. candidate,research on geological disaster prevention] E-mail:2029476606@qq.com
更新日期/Last Update: 2019-09-30