[1]赵宗权,张 洁,焦树林*,等.龙滩水库溶解无机碳来源及变化特征[J].山地学报,2020,(1):19-30.[doi:10.16089/j.cnki.1008-2786.000487]
 ZHAO Zongquan,ZHANG Jie,JIAO Shulin*,et al.Sources and Variation Characteristics of Dissolved Inorganic Carbon in Longtan Reservoir, China[J].Mountain Research,2020,(1):19-30.[doi:10.16089/j.cnki.1008-2786.000487]
点击复制

龙滩水库溶解无机碳来源及变化特征()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第1期
页码:
19-30
栏目:
山地环境
出版日期:
2020-02-01

文章信息/Info

Title:
Sources and Variation Characteristics of Dissolved Inorganic Carbon in Longtan Reservoir, China
文章编号:
1008-2786-(2020)1-019-12
作者:
赵宗权12 张 洁12 焦树林12* 莫跃爽12 曹玉平12
1.贵州师范大学 地理与环境科学学院,贵阳 550025; 2.贵州省山地资源与环境遥感应用重点实验室,贵阳 550025
Author(s):
ZHAO Zongquan12 ZHANG Jie12 JIAO Shulin12* MO Yueshuang12 CAO Yuping12
1.School of Geography and Environmental Science, Guizhou Normal University, Guiyang 550025, China; 2.Key Laboratory of Remote Sensing Application on Mountain Resources and Environment in Guizhou Province, Guiyang 550025, China
关键词:
溶解无机碳 碳稳定同位素 筑坝 龙滩水库 红水河
Keywords:
dissolved inorganic carbon stable carbon isotope damming Longtan Reservoir Hongshui River
分类号:
P593; P951
DOI:
10.16089/j.cnki.1008-2786.000487
文献标志码:
A
摘要:
河流在碳的运输过程中扮演着重要角色。为探究河流筑坝拦截后龙滩水库溶解无机碳(DIC)的来源和变化特征,于2016年7月和2017年1月采集水样,然后分析了河水DIC及其碳稳定同位素(δ13C)值。研究结果表明:(1)δ13CDIC值具有显著的时空差异,表明两个季节影响DIC的主要因素和DIC的来源并不相同。雨季,DIC及其 δ13C主要分布在2.04~4.12 mmol·L-1和-5.52‰~-2.87‰的范围内; 旱季,水体DIC为3.33~4.61 mmol·L-1,而δ13CDIC显著低于雨季为-15.90‰~-9.12‰。雨季,稀释效应显著降低了DIC浓度,由于水体热分层使得DIC在水柱剖面上差异显著,而旱季由于混合作用的影响,在剖面上差异较低。(2)在雨季,河流 δ13CDIC较旱季明显偏正,碳酸盐岩的强烈风化输入大量HCO3-是DIC的主要来源。在旱季,DIC和 δ13CDIC成反比关系, δ13CDIC在旱季变得更低,其大部分的DIC来自于土壤CO2输入和原位有机呼吸作用。旱季水体热分层消失,混合作用使得底部具有较低 δ13C值的含碳水体上涌,并与表水层混合导致其 δ13CDIC值低于雨季。这种季节性模式与自然河流不同,而是与湖泊的季节变化特征更为类似,说明河流拦截蓄水后逐渐湖沼化,并显著影响了DIC的循环。
Abstract:
Rivers are crucial in the transportation of carbon. In order to determine the composition and variation of dissolved inorganic carbon(DIC)in Longtan Reservoir after damming and interception, water samples were collected in July 2016 and January 2017 respectively, and then the DIC and its stable carbon isotope(δ13C)values were analyzed. The results showed that:(1)The δ13CDIC values of reservoir had significant temporal and spatial differences, indicating that the main factors and sources of DIC were different during dry and rainy seasons. In rainy season, the DIC and δ13C of reservoir were distributed in the range of 2.04 ~ 4.12 mmol·L-1 and -5.52‰~-2.87‰ respectively; in dry season, the DIC of water was3.33 ~ 4.61 mmol·L-1, while δ13CDIC was significantly lower than that in rainy season, which was -15.90‰~-9.12‰. In rainy season, the diluted effect significantly reduced the concentration of DIC. Because of the thermal stratification of water, the difference of DIC on the water column was significant, while in the dry season, due to the influence of mixing, the difference was lower on the water column.(2)In rainy season, the δ13CDIC of the river was obviously more positive than that in dry season, and the strong weathering of carbonate rocks input a large amount of HCO-3, which was the main source of DIC. In dry season, DIC was inversely proportional to δ13CDIC, and δ13CDIC became lower in the dry season, indicating that most of the DIC came from soil CO2 and situ organic respiration. The thermal stratification of reservoir disappeared in dry season, and the mixing action made the monimolimnion with lower δ13C value upwelling, and mixing with the epilimnion subsequently resulted in its δ13CDIC value lower than that in rainy season. This seasonal variation was different from that of natural rivers, but more similar to the seasonal variation of lakes, indicating that the river gradually became limnetic after interception and impoundment, which significantly affected the cycle of DIC.

参考文献/References:

[1] MARCOTT S A, SHAKUN J D, CLARK P U, et al. A reconstruction of regional and global temperature for the past 11300 years [J]. Science, 2013, 339(6124): 1198-1201.
[2] IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge, UK: Cambridge University Press, 2013: 866-871.
[3] 吕书丛,焦茹媛,王芳, 等. 长江下游河-湖系统溶解性有机碳化学组成、变化特征及其与二氧化碳分压的关系 [J]. 环境科学学报,2018, 38(5): 2034-2044. [LV Shucong, JIAO Ruyuan, WANG Fang, et al.Characteristics and chemical compositions of DOC linking to the partial pressure of carbon dioxide in the lake-river systems of lower Changjiang River basin [J]. Acta Scientiae Circumstantiae, 2018, 38(5): 2034-2044]
[4] MCCLANAHAN K, POLK J, GROVES C, et al. Dissolved inorganic carbon sourcing using δ13CDIC from a karst influenced river system [J]. Earth Surface Processes and Landforms, 2016, 41(3): 392-405.
[5] MEYBECK M. Global chemical weathering of surficial rocks estimated from river dissolved loads [J]. American Journal of Science, 1987, 287(5): 401-428.
[6] HUOTARI J, OJALA A, PELTOMAA E, et al. Temporal variations in surface water CO2 concentration in a boreal humic lake based on high-frequency measurements [J]. Boreal Environment Research, 2009, 14(1): 48-60.
[7] WANG Xuchen, LUO Chunle, GE Tiantian, et al. Controls on the sources and cycling of dissolved inorganic carbon in the Changjiang and Huanghe River estuaries, China: 14C and 13C studies [J]. Limnology and Oceanography, 2016, 61(4): 1358-1374.
[8] HAGEDORN B, EL-KADI A I, WHITTIER R B. Controls on the δ13CDIC and alkalinity budget of a flashy subtropical stream(Manoa River, Hawaii)[J]. Applied Geochemistry, 2016,73: 49-58.
[9] 杨平, 金宝石, 谭立山, 等. 亚热带河口陆基养虾塘水体溶解性碳浓度及沉积物-水界面碳通量时空动态特征[J]. 生态学报, 2018, 38(6): 1994-2006. [YANG Ping, JIN baoshi,TAN Lishan, et al.Spatial-temporal variations of water column dissolved carbon concentrations and dissolved carbon flux at the sediment-water interface in the shrimp ponds from two subtropical estuaries [J]. Acta Ecologi ca Sinica, 2018, 38(6): 1994-2006]
[10] CAO Xingxing, WU Pan, HAN Zhiwei, et al. Factors controlling the isotope composition of dissolved inorganic carbon in a karst-dominated wetland catchment, Guizhou Province, Southwest China [J]. Environmental Earth Sciences, 2016, 75(14): 1103-1117.
[11] BRUNET F, DUBOIS K, VEIZER J, et al. Terrestrial and fluvial carbon fluxes in a tropical watershed: Nyong basin, Cameroon [J]. Chemical Geology, 2009, 265(3/4): 563-572.
[12] TWEED S, LEBLANC M, BASS A, et al. Leaky savannas: the significance of lateral carbon fluxes in the seasonal tropics [J]. Hydrological Processes, 2016, 30(6): 873-887.
[13] LI Siliang, LIU Congqiang, LI Jun, et al. Geochemistry of dissolved inorganic carbon and carbonate weathering in a small typical karstic catchment of Southwest China: Isotopic and chemical constraints [J]. Chemical geology, 2010, 277(3/4): 301-309.
[14] RICHEY J E, MELACK J M, AUFDENKAMPE A K, et al. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2 [J]. Nature, 2002, 416(6881): 617-620.
[15] RAYMOND P A, BAUER J E, CARACO N F, et al. Controls on the variability of organic matter and dissolved inorganic carbon ages in northeast US rivers [J]. Marine Chemistry, 2004, 92(1/4): 353-366.
[16] CAI Weijun, GUO Xianghui, CHEN Chen Tung Arthur, et al. A comparative overview of weathering intensity and HCO- 3flux in the world's major rivers with emphasis on the Changjiang, Huanghe, Zhujiang(Pearl)and Mississippi Rivers [J]. Continental Shelf Research, 2008, 28(12): 1538-1549.
[17] LAUERWALD R, HARTMANN J, MOOSDORF N, et al. What controls the spatial patterns of the riverine carbonate system?-A case study for North America [J]. Chemical Geology, 2013, 337/338: 114-127.
[18] MAYORGA E, AUFDENKAMPE A K, MASIELLO C A, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers [J]. Nature, 2005, 436(7050): 538-541.
[19] 喻元秀, 汪福顺, 王宝利, 等. 溶解无机碳及其同位素组成特征对初期水库过程的响应——以新建水库(洪家渡)为例[J]. 矿物学报, 2009, 29(2): 268-274. [YU Yuanxiu, WANG Fushun, WANG Baoli, et al. Response of dissolved inorganic carbon and its isotopic spatial and temporal characteristics to the earlier reservoi rprocess: a case study on a new reservoir(Hongjiadu)[J]. Acta Mineralogica Sinica, 2009, 29(2): 268-274]
[20] 李晓东, 刘小龙, 杨周, 等. 嘉陵江梯级水库群溶解无机碳同位素的时空变化特征[J]. 上海大学学报(自然科学版), 2015, 21(3): 286-293. [LI Xiaodong, LIU Xiaolong, YANG Zhou, et al. Spatial and seasonal variation of dissolved inorganic carbon isotope compositions in the cascade reservoirs of the Jialing River [J]. Journal of Shanghai University(Natural Science), 2015, 21(3): 286-293]
[21] 杨梦迪, 崔高仰, 李亲凯, 等. 梯级水库群水体碳、硫元素循环及耦合效应——以嘉陵江为例[J]. 生态学杂志, 2018, 37(3): 651-660. [YANG Mengdi, CUI Gaoyang, LI Qinkai, et al. The cycle and coupling effect of carbon and sulfur in cascade reservoirs: A case study of Jialing River [J]. Chinese Journal of Ecology, 2018, 37(3): 651-660]
[22] NIMICK D A, GAMMONS C H, PARKER S R. Diel biogeochemical processes and their effect on the aqueous chemistry of streams: A review [J]. Chemical Geology, 2011, 283(1/2, SI): 3-17.
[23] 莫雪, 蒲俊兵, 袁道先, 等. 亚热带典型岩溶区地表溪流溶解无机碳昼夜变化特征及其影响因素[J]. 第四纪研究, 2014, 34(4): 873-880. [MO Xue, PU Junbing, YUAN Daoxian, et al. Diel variation and influence factors of dissolved inorganic carbon in a surface creek fed by a karst subterranean stream in subtropical area, SW China [J]. Quaternary Sciences, 2014, 34(4): 873-880]
[24] TIUNOV A V. Stable isotopes of carbon and nitrogen in soil ecological studies [J]. Biology Bulletin, 2007, 34(4): 395-407.
[25] LIU Weiguo, XING Meng. Isotopic indicators of carbon and nitrogen cycles in river catchments during soil erosion in the arid Loess Plateau of China [J]. Chemical Geology, 2012, 296: 66-72.
[26] 喻元秀, 刘丛强, 汪福顺, 等. 乌江流域梯级水库中溶解无机碳及其同位素分异特征[J]. 科学通报, 2008, 53(16): 1935-1941. [YU Yuanxiu, LIU Congqiang, WANG Fushun, et al. Dissolved inorganic carbon and its isotope differentiation characteristics in cascade reservoirs of Wujiang River basin [J]. Chinese Science Bulletin, 2008, 53(16): 1935-1941]
[27] HAN Qiong, WANG Baoli, LIU Congqiang, et al. Carbon biogeochemical cycle is enhanced by damming in a karst river [J]. Science of The Total Environment, 2018, 616: 1181-1189.
[28] 李秋华. 贵州高原水库富营养化特征及评价[J]. 贵州师范大学学报(自然科学版), 2018, 36(2): 1-8. [LI Qiuhua. Characteristics and evaluation of eutrophication in Guizhou plateau reservoirs [J]. Journal of Guizhou Normal University(Natural Sciences), 2018, 36(2): 1-8]
[29] 李磊. 西南两座深水水库浮游植物功能群时空分布特征及其对富营养化的响应[D].贵阳:贵州师范大学, 2016:11-12.[LI Lei. Spatial and temporal distribution characteristics of phytoplankton functional groups and their responses to eutrophication in two deep reservoirs,southwest China [D]. Guiyang: Guizhou Normal University, 2016: 11-12]
[30] 焦树林, 陶贞, 高全洲, 等. 2008. 西江河口段溶解无机碳稳定同位素组成的时空变化[J]. 地理学报, 2013, 63(5): 553-560. [JIAO Shulin, TAO Zhen, GAO Quanzhou, et al. Spatio-temporal variation of the stable isotopic composition of river ine dissolved inorganic carbon of the Xijiang inner estuary [J]. Acta Geographica Sinica, 2013, 63(5): 553-560]
[31] 张永领, 杨小林, 张东. 小浪底水库影响下的黄河花园口站和小浪底站pCO2特征及扩散通量[J]. 环境科学, 2015, 36(1): 40-48. [ZHANG Yongling, YANG Xiaolin, ZHANG Dong. Partial pressure of CO2 and CO2 degassing fluxes of Huayuankou and Xiaolangdi Station affected by Xiaolangdi Reservoir [J]. Environmental Science, 2015, 36(1): 40-48]
[32] 李凌宇, 于瑞宏, 田明扬, 等. 黄河二氧化碳逸出时空变化及其影响因素——以头道拐水文站为例[J]. 生态学报, 2017, 37(22): 7636-7646. [LI Lingyu, YU Ruihong, TIAN Mingyang, et al. Spatial-temporal variations and influencing factors of carbon dioxide evasion from the Yellow River: An example of the Toudaoguai Gauging Station [J]. Acta Ecologica Sinicam, 2017, 37(22): 7636-7646]
[33] 袁热林,焦树林,曹玉平,等.岩溶区峡谷型水库水体理化特征及其成因探究——以光照水库为例[J]. 人民珠江, 2018, 39(1): 26-30. [YUAN Relin, JIAO Shulin, CAO Yuping, et al. Study on physicochemical characteristics of the water body of canyon type reservoir in karst area and its causes: A case study on Guangzhao Reservoir [J]. Pearl River, 2018, 39(1): 26-30]
[34] DAS A, KRISHNASWAMI S, BHATTACHARYA S. Carbon isotope ratio of dissolved inorganic carbon(DIC)in rivers draining the Deccan Traps, India: Sources of DIC and their magnitudes [J]. Earth And Planetary Science Letters, 2005, 236(1/2): 419-429.
[35] RAYMOND P A, OH N H, TURNER R E, et al. Anthropogenically enhanced fluxes of water and carbon from the Mississippi River [J]. Nature, 2008, 451(7177): 449-452.
[36] FERGUSON P R, DUBOIS K D, VEIZER J. Fluvial carbon fluxes under extreme rainfall conditions: Inferences from the Fly River, Papua New Guinea [J]. Chemical Geology, 2011, 281(3/4): 283-292.
[37] 刘再华, 袁道先. 中国典型表层岩溶系统的地球化学动态特征及其环境意义[J]. 地质论评, 2000, 46(3): 324-327. [LIU Zaihua, YUAN Daoxian. Features of geochemical variations in typical epikarst systems of China and their environmental significance [J]. Geological Review, 2000, 46(3): 324-327]
[38] ZENG Fanwei, MASIELLO C A. Sources of CO2 evasion from two subtropical rivers in North America [J]. Biogeochemistry, 2010, 100(1/3): 211-225.
[39] 邱华北, 商立海, 李秋华, 等. 水体热分层对万峰湖水环境的影响[J]. 生态学杂志, 2011, 30(5): 1039-1044. [QIU Huabei, SHANG Lihai, LI Qiuhua, et al. Impacts of seasonal thermal stratification on the water environment of Wanfeng Lake [J]. Chinese Journal of Ecology, 2011, 30(5): 1039-1044]
[40] MARX A, DUSEK J, JANKOVEC J, et al. A review of CO2 and associated carbon dynamics in headwater streams: A global perspective[J]. Reviews of Geophysics, 2017, 55(2): 560-585.
[41] BOLPAGNI R, LAINI A, MUTTI T, et al. Connectivity and habitat typology drive CO2 and CH4 fluxes across land-water interfaces in lowland rivers[J]. Ecohydrology, 2019, 12(1):e2036.
[42] 张蕊, 赵钰, 何红波, 等. 基于稳定碳同位素技术研究大气CO2浓度升高对植物-土壤系统碳循环的影响[J]. 应用生态学报, 2017, 28(7): 2379-2388. [ZHANG Rui, ZHAO Yu, HE Hongbo, et al. Investigation on effects of elevated atmospheric CO2 concentration on plant-soil system carbon cycling: Based on stable isotopic technique [J]. Chinese Journal of Applied Ecology, 2017, 28(7): 2379-2388]
[43] 李干蓉, 刘丛强, 陈椽, 等. 猫跳河流域梯级水库夏-秋季节溶解无机碳(DIC)含量及其同位素组成的分布特征[J]. 环境科学, 2009, 30(10): 2891-2897. [LI Ganrong, LIU Congqiang, CHEN Chuan, et al. Dissolve inorganic carbon and its carbon isotope composition in cascade reservoir of the Maotiao River during summer and autumn [J]. Environmental Science, 2009, 30(10): 2891-2897]
[44] 张兴波, 蒋勇军, 邱述兰, 等. 农业活动对岩溶作用碳汇的影响: 以重庆青木关地下河流域为例[J]. 地球科学进展, 2012, 27(4): 466-476. [ZHANG Xingbo, JIANG Yongjun, QIU Shulan, et al. Agricultural activities and carbon cycling in karst areas in southwest China: dissolving carbonate rocks and CO2 sink [J]. Advances in Earth Science, 2012, 27(4): 466-476]
[45] 刘静, 李思亮, 钟君, 等. 西江上游河水中硫酸盐来源及其对化学风化的影响[J]. 生态学杂志, 2018, 37(3): 714-722. [LIU Jing, LI Siliang, ZHONG Jun, et al. Sulfate sources and its impacts on chemical weathering in water of the upper reaches of Xijiang River [J]. Chinese Journal of Ecology, 2018, 37(3): 714-722]
[46] 刘子琦, 李开萍. 贵州石漠化地区降雨期间洞穴CO2变化特征与其影响因素——以石将军洞为例[J]. 贵州师范大学学报(自然科学版), 2018, 36(4): 13-17. [LIU Ziqi, LI Kaiping. Variation and its effect factors of cave air CO2 during rainfall in rocky desertification area in Guizhou: A case study of Shijiangjun cave [J]. Journal of Guizhou Normal University(Natural Sciences), 2018, 36(4): 13-17]
[47] COSFORD J, QING Hairuo, MATTEY D et al. Climatic and local effects on stalagmite δ13C values at Lianhua Cave, China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 280(1/2): 235-244.

备注/Memo

备注/Memo:
收稿日期(Received date):2019-08-05; 改回日期(Accepted date):2020-01-23
基金项目(Foundation item):国家自然科学基金(41263011); 贵州省国内一流学科建设项目“贵州师范大学地理学”(黔教科研发[2017]85号)。[National Natural Science Foundation of China(41263011); Guizhou Province First-Class Subject Construction Project “Geography of Guizhou Normal University”(85[2017])]
作者简介(Biography):赵宗权(1992-), 男, 安徽阜阳人,硕士研究生,主要研究方向:环境变化与地表水体碳循环。[ZHAO Zongquan(1992-), male, born in Fuyang, Anhui province, M.Sc. candidate, research on environmental change and carbon cycle of surface water] E-mail: zhaozq1992@126.com
*通讯作者(Corresponding author):焦树林(1969-),男,教授,博士生导师,主要研究方向:流域地表过程与环境变化。[JIAO Shulin(1969-), male, professor, Ph.D. supervisor, research on surface process and environmental change in watershed] E-mail: jiaoshulin@gznu.edu.cn
更新日期/Last Update: 2020-01-30