[1]周 飞,许 强*,亓 星,等.灌溉诱发突发性黄土滑坡机理研究[J].山地学报,2020,(1):73-82.[doi:10.16089/j.cnki.1008-2786.000492]
 ZHOU Fei,XU Qiang*,QI Xing,et al.The Mechanism Study of the Irrigation-Induced Sudden Loess Landslides[J].Mountain Research,2020,(1):73-82.[doi:10.16089/j.cnki.1008-2786.000492]
点击复制

灌溉诱发突发性黄土滑坡机理研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第1期
页码:
73-82
栏目:
山地灾害
出版日期:
2020-02-01

文章信息/Info

Title:
The Mechanism Study of the Irrigation-Induced Sudden Loess Landslides
文章编号:
1008-2786-(2020)1-073-10
作者:
周 飞12许 强2*亓 星2巨袁臻2严 越1
1.四川省地质工程勘察院, 成都 610072; 2.成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都610059
Author(s):
ZHOU Fei1 XU Qiang2* QI Xing2 JU Yuanzhen2 YAN Yue1
1. Sichuan institute of geological engineering investigating, Chengdu 610072, China; 2. State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
关键词:
突发性黄土滑坡 三轴试验 模型试验 滑坡机理
Keywords:
sudden loess landslide triaxial test model test mechanism analysis
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000492
文献标志码:
A
摘要:
系统揭示黑方台突发性黄土滑坡物理力学机理,对滑坡防治具有重要的作用。自上世纪六十年代年黑方台常年的农业灌溉诱发了大量20~40 m厚的饱和突发性黄土滑坡。本研究在野外调查的基础上,通过分析滑坡的变形破坏特征,针对分布范围广、危害性较大的突发性黄土滑坡,利用室内GDS三轴试验和模型试验,分析研究了饱和黄土的应力应变特性及突发性黄土滑坡的力学机制。三轴试验结果表明,当围压小于300 kPa时,饱和黄土可产生完全液化,并处于流塑状态; 当围压大于300 kPa时,饱和黄土仅产生部分液化,仍具有一定的抗剪强度。饱和黄土的应力—应变模式均表现为强烈的应变软化—剪缩型,并具有一定的稳态特性。模型试验表明突发性黄土滑坡的变形破坏过程可大致分为底部浸水饱和—毛细水上升—持续蠕动变形—突发性破坏4个阶段。斜坡发生突发性破坏时,孔隙水压力激增,但总应力仍大于孔隙水压力,黄土滑坡发生部分液化,饱和黄土仍具有一定的强度,为突发性黄土滑坡发生提供了应力和能量积累的力学条件。研究从有效应力原理的角度阐述了突发性黄土滑坡的力学机理,可以为滑坡的防治治理提供一定的理论依据。
Abstract:
The physical and mechanical mechanism of sudden loess slopes plays an important role in the prevention and control of landslides. Due to long-term excessive flood irrigation, the saturated zone with a thickness of 20~40 m has been formed at the bottom of loess slopes on the Heifangtai terrace since 1960 s. A large number of sudden loess landslides have been induced by the groundwater table rising since 1960 s. On the basis of field investigation and UAVs images, the inventory of sudden loess landslides were carried out and the deformation and distribution characteristics of loess landslides were analyzed. These landslides are widely distributed along the margin of terrace and have caused great loss of lives and properties. Then, GDS triaxial tests and model tests were designed and performed to analyze the stress-strain characteristics of saturated loess and the failure mechanism of loess landslides. The results of the triaxial tests revealed that when confining pressure was less than 300 kPa, the saturated loess at low strain could totally be liquefied and be in flow plastic state. However, when confining pressure was more than 300 kPa, the samples were partial liquefaction and still had a certain shear strength. The stress-strain mode of saturated loess was strong strain-softening way and behaved steady characteristic. From the model tests, it was found that the the deformation process of sudden loess landslide could be divided into four phases, i.e., soakings and saturation, capillary rising, creep deformation, sudden destruction. When the loss slope was a sudden destruction, the pore water pressure increased rapidly in a period of time, but the total stress was greater than pore water pressure and was partial liquefaction, it had a certain strength. The result provided the mechanical condition for stress and energy accumulation of sudden loess landslides. From the point of principle of effective, the research expounded the mechanical mechanism of sudden loess landslide and provided a theoretical basis for prevention engineering of loess landslide.

参考文献/References:

[1] NIEMIEC D, MARSCHALKO M, YILMAZ I, et al. Surface runoff on loess: an example of a commonly overlooked hazardous process from northeast Czech Republic[J], Bulletin of Engineering Geology and the Environment, 2019, 78(8):5841-5851
[2] 周飞, 许强, 巨袁臻, 等. 黑方台黄土斜坡变形破坏机理研究[J]. 水文地质工程地质, 2017, 44(1):157-163. [ZHOU Fei, XU Qiang, JU Yuanzhen, et al. Study on the deformation and failure mechanism of loess slope in Hei Fangtai[J]. Hydrogeology & Engineering Geology, 2017, 44(1):157-163]
[3] 李骅锦, 许强, 何雨森, 等. 甘肃黑方台滑坡滑距参数的BP神经网络模型[J]. 水文地质工程地质, 2016, 43(4):141-146+152. [LI Huajin, XU Qiang, HE Yusen, et al. BP neural network model for analyzing the impact factors of the travel distance of the Heifangtai landslide in Gansu[J]. Hydrogeology & Engineering Geology, 2016, 43(4):141-146+152]
[4] 许领, 戴福初, 闵弘. 黄土滑坡研究现状与设想[J]. 地球科学进展, 2008,(3):236-242. [XU Ling, DAI Fuchu, MIN Hong, Research Progress and Some Thoughts on LoessLandslide[J]. Advances in Earth Science, 2008,(3):236-242]
[5] 亓星, 许强, 彭大雷, 等. 地下水诱发渐进后退式黄土滑坡成因机理研究——以甘肃黑方台灌溉型黄土滑坡为例[J]. 工程地质学报, 2017, 25(1):147-153. [QI Xing, XU Qiang, PENG Dalei, et al. Mechanism of gradual retreat loess landslide caused by groundwater: a case study of the irrigation loess landslide in Heifangtai, Gansu Province[J], Journal of Engineering Geology, 2017, 25(1):147-153]
[6] 董英, 贾俊, 张茂省, 等. 甘肃永靖黑方台地区灌溉诱发作用与黄土滑坡响应[J]. 地质通报, 2013, 32(6):893-898. [DONG Ying, JIA Jun, ZHANG Maosheng, et al. An analysis of the inducing effects of irrigation and the responses of loess landslides in Heifangtai area[J]. Geological Bulletin of China, 2013, 32(6):893-898]
[7] 武彩霞, 许领, 戴福初, 等. 黑方台黄土泥流滑坡及发生机制研究[J]. 岩土力学, 2011, 32(6):1767-1773. [WU Caixia, XU Ling, DAI Fuchu, et al. Topographic features and initiation of earth flows on Heifangtai loess plateau[J]. Rock and Soil Mechanics, 2011, 32(6):1767-1773]
[8] 王念秦, 杨盼盼, 王得楷, 等. 盐锅峡黑方台黄土塬塬坡地下水浸润带研究[J]. 西安科技大学学报, 2017, 37(1):51-56. [WANG Nianqin, YANG Panpan, WANG Dekai, et al. Underground water infiltration area of slope at the edge of loess ”yuan”, Heifangtai, Yanguoxia[J]. Journal of Xi'an University of Science and Technology, 2017, 37(1):51-56]
[9] 朱立峰, 谷天峰, 胡炜, 等. 灌溉诱发黄土滑坡的发育机制研究[J]. 工程地质学报, 2016, 24(4):485-491. [ZHU Lifeng, GU Tianfeng, HU Wei, et al. Developmental Mechanism of Irrigation-Induced Loess Landslides [J]. Journal of Engineering Geology, 2016, 24(4):485-491]
[10] 张茂省, 胡炜, 朱立峰, 等. 饱和土体原位大型剪切试验方法与实践[J]. 地质通报, 2013, 32(6):919-924. [ZHANG Maosheng, HU Wei, ZHU Lifeng, et al. The method for large scale in-situ shear test of saturated soils and its application [J]. Geological Bulletin of China, 2013, 32(6):919-924]
[11] 唐东旗, 彭建兵, 黄强兵. 非饱和黄土微观结构与黄土滑坡[J]. 防灾减灾工程学报, 2012, 32(4):509-513. [TANG Dongqi, PENG-Jianbing, HUANG Qiangbing, Microstructure of Unsaturated Loess and Loess Landslide[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32(4):509-513]
[12] GU Tianfeng, WANG Jiading, WANG Chenxing, et al. Experimental study of the shear strength of soil from the Heifangtai Platform of the Loess Plateau of China[J]. Journal of Soils and Sediments, 2019, 19(10):3463-3475.
[13] 周跃峰, 谭国焕, 甄伟文, 等. 入渗诱发黄土滑坡的力学机制[J]. 岩土力学, 2013, 34(11):3173-3179+3186. [ZHOU Yuefeng, TAN Guohuan,ZHEN Weiwen, et al. Mechanism of infiltration-induced loess landslides[J]. Rock and Soil Mechanics, 2013, 34(11):3173-3179+3186]
[14] 金艳丽, 戴福初. 饱和黄土的静态液化特性试验研究[J]. 岩土力学, 2008, 29(12):3293-3298. [JIN Yanli, DAI Fuchu. Experimental investigation of static liquefaction of saturated loess[J]. Rockand Soil Mechanics, 2008, 29(12):3293-3298]
[15] 蒲济林, 周建基. 黑方台古风化红层砂泥岩物理性质试验研究[J]. 人民黄河, 2016, 38(5):100-103+120. [PU Jilin, ZHOU Jianji. Experimental study on physical properties of Palaeo-Weathering red sandy mudstone in Heifangtai area[J]. Yellow River, 2016, 38(5):100-103+120]
[16] 许强, 彭大雷, 李为乐, 等. 溃散性滑坡成因机理初探[J].西南交通大学学报, 2016, 51(5):995-1004. [XU Qiang, PENG Dalei, LI Weile, et al. Study on formation mechanism of diffuse failure landslide[J] Journal of Southwest Jiaotong Univesity, 2016, 51(5):995-1004]
[17] 曹从伍, 许强, 彭大雷, 等. 基于物理模拟实验的黑方台黄土滑坡破坏机理研究[J]. 水文地质工程地质, 2016, 43(4):72-77. [CAO Congwu, XU Qiang, PENG Dalei, et al. Research on the failure mechanism of the Heifangtai loess landslides based on the physical simulation experiments[J]. Hydrogeology & Engineering Geology, 2016, 43(4):72-77]
[18] 慕焕东, 宋登艳, 张茂省, 等. 灌溉诱发型黄土滑坡离心模型试验研究[J]. 岩土工程学报, 2016, 38(S2):172-177. [MU Huandong, SONG Dengyan, ZHANG Maosheng, et al. Centrifuge modelling tests on loess landslides induced by irrigation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(S2):172-177]
[19] 周琪, 许强, 周书, 等. 基于数值模拟的突发型黄土滑坡运动过程研究—以黑方台陈家8#滑坡为例[J]. 山地学报, 2019, 37(4):528-537. [ZHOU Qi, XU Qiang, ZHOU Shu, et al. Movement Process of Abrupt Loess Flowslide Based on Numerical Simulation—A Case Study of Chenjia 8# on the Heifangtai Terrace[J]. Mountain Research, 2019, 37(4):528-537]
[20] 杨志全, 丁攀, 雨德聪, 等. 基于孔隙率的延安黄土抗剪强度模型[J]. 山地学报, 2019, 37(3):392-399. [YANG Zhiquan, DING Pan, YU Decong, et al. Shear Strength of Yan'an Loess Interpreted by Porosity[J]. Mountain Research, 2019, 37(3):392-399]
[21] 赵纪飞, 黄嘉悦, 侯晓坤, 等. 灌溉诱发的黑方台黄土滑坡泥流机理分析[J]. 灾害学, 2017, 32(4):60-66. [ZHAO Jifei, HUANG Jiayue, HOU Xiaokun, et al. Analysis of a flow-slide in Heifangtai induced by irrigation[J], Journal of catastrophology, 2017, 32(4):60-66]
[22] XU Ling, YAN Dongdong. The groundwater responses to loess flowslides in the Heifangtai platform[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(7):4931-4944.
[23] 周飞. 甘肃省黑方台黄土斜坡变形特征与滑坡机理研究[D]. 成都: 成都理工大学, 2015:93-96. [ZHOU Fei, Study on the deformation characteristics of losee slope and mechanism of landslide in Hei Fangtai, Gansu Province[D]. Chengdu: Chengdu University of Technology, 2015]
[24] SADEGHI H, KIANI M, SADEGHI M, et al. Geotechnical characterization and collapsibility of a natural dispersive loess[J]. Engineering Geology, 2019, 250:89-100.

备注/Memo

备注/Memo:
收稿日期(Received date):(Received date):2019-03-08; 改回日期(Accepted date):2020-01-14
基金项目(Foundation item):国家自然科学基金(41630640); 国家重点基础研究发展计划(2014CB744703)。 [National Natural Science Foundation of China(41630640); National Key Basic Research Program of China(2014CB744703)]
作者简介(Biography):周飞(1988-),男,四川达州人,工程师,主要研究方向:地质灾害预测评价及防治处理。[ZHOU Fei(1988-), male, born in Dazhou, Sichuan province, M. SC. candidate, research on geological hazard evaluation and prevention] E-mail:363845842@qq.com
*通讯作者(Corresponding author):许强(1968-),男,博士,教授,主要研究方向:滑坡灾害评价、预测及防治处理。[XU Qiang(1968-), male, Ph.D., professor, research on evaluation, prediction, prevention and treatment of landslide hazard] E-mail: xq@cdut.edu.cn
更新日期/Last Update: 2020-01-30