[1]李 阳,王根绪,芮鹏飞,等.裸斑对青藏高原多年冻土区高寒草甸生态系统呼吸和甲烷吸收的影响[J].山地学报,2020,(2):190-200.[doi:10.16089/j.cnki.1008-2786.000501]
 LI Yang,WANG Genxu,RUI Pengfei,et al.Effects of Bare Patches on Ecosystem Respiration and Methane Uptake of Alpine Meadow in a Permafrost Region of the Qinghai-Tibet Plateau[J].Mountain Research,2020,(2):190-200.[doi:10.16089/j.cnki.1008-2786.000501]
点击复制

裸斑对青藏高原多年冻土区高寒草甸生态系统呼吸和甲烷吸收的影响()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第2期
页码:
190-200
栏目:
山地环境
出版日期:
2020-05-10

文章信息/Info

Title:
Effects of Bare Patches on Ecosystem Respiration and Methane Uptake of Alpine Meadow in a Permafrost Region of the Qinghai-Tibet Plateau
文章编号:
1008-2786-(2020)2-190-11
作者:
李 阳12王根绪1芮鹏飞3杨 祎 12常瑞英1*
1.中国科学院、水利部成都山地灾害与环境研究所 山地表生过程与调控重点实验室,成都610041; 2.中国科学院大学,北京100049; 3.青藏高原北麓河冻土工程与环境综合观测研究站,兰州,730000
Author(s):
LI Yang12 WANG Genxu1 RUI Pengfei3 YANG Yi12 CHANG Ruiying1*
1. Key Laboratory of Mountain Surface Processes and Ecological Regulation,Institute of Mountain Hazards and Environment,Chinese Academy of Sciences,Chengdu 610041,China; 2. University of Chinese Academy of Sciences, Beijing 100049, China; 3. Beiluhe Observation and Research Station on Frozen Soil Engineering and Environment in Qinghai-Tibet Plateau, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
关键词:
碳交换 地形 土壤湿度 方差分解法 青藏高原
Keywords:
carbon exchange terrain soil moisture variation partitioning analysis the Qinghai - Tibet Plateau
分类号:
Q948
DOI:
10.16089/j.cnki.1008-2786.000501
文献标志码:
A
摘要:
研究裸斑对青藏高原多年冻土区高寒草甸生态系统呼吸和甲烷通量的影响,对准确评估多年冻土区小流域和区域尺度碳交换具有重要意义。本文以青藏高原风火山高寒草甸中裸斑和高植被覆盖斑块为研究对象,通过对比不同地形条件下(不同坡向和海拔)二者生态系统呼吸和甲烷通量的差异来研究裸斑对高寒草甸生态系统呼吸和甲烷通量的影响。结果表明:(1)裸斑显著减少了高寒草甸的生态系统呼吸,裸斑和高植被覆盖斑块生长季生态系统呼吸的平均速率分别为2.26和6.17 g CO2 m-2 d-1,这主要是二者微生物量碳和蔗糖酶活性差异造成的;(2)裸斑和高植被覆盖斑块在生长季内均表现为甲烷的汇,二者生长季甲烷吸收的平均速率分别为25.4和6.61 μg CH4 m-2 h-1; 在坡中和坡顶,裸斑的甲烷吸收速率显著大于高植被覆盖斑块,而在坡底,二者的甲烷吸收速率相近; 土壤湿度是调控高寒草甸甲烷吸收空间变异的主要因素。研究结果深化了裸斑对青藏高原多年冻土区高寒草甸碳交换影响的认识,可为小流域以及区域尺度碳交换的准确评估提供科学依据。
Abstract:
It is of great significance to study the effects of bare patches on ecosystem respiration(Re)and methane(CH4)flux of alpine meadow in the Qinghai-Tibet Plateau for accurate assessment of small watershed and regional scale carbon exchange. In this paper, the bare patches and high vegetation coverage patches in an alpine meadow on the Mountain Fenghuo were studied, and the effect of bare patches on the Re and CH4 flux in alpine meadow by comparing the difference in Re and CH4 flux between bare patches and high vegetation coverage patches different terrain conditions(different slope aspects and elevations). The results showed that:(1)The bare patches significantly reduced Re in alpine meadow, and the average Re rates of bare patches and high vegetation coverage patches were 2.26 and 6.17 g CO2 m-2 d-1 during the growing seasons, which was mainly caused the difference in their microbial biomass carbon and saccharase activity.(2)During the growing season, both the bare patches and high vegetation coverage patches functioned as CH4 sinks, and the average CH4 uptake rates of two were 25.4 and 6.61 μg m-2 h-1, respectively. The CH4 uptake rate of bare patches was significantly greater than that of high vegetation coverage patches at the middle and upper of the slopes, but their CH4 uptake rate were similar at the bottom of the slopes. Soil moisture was the main factor regulating the spatial variation of CH4 uptake in alpine meadow. These results deepened the understanding of the impact of bare patches on carbon exchange in alpine meadow on the region, and provided scientific basis for accurate assessment of carbon exchange in small watershed and regional scale.

参考文献/References:

[1] SCHUUR E A G, MCGUIRE A D, SCHÄDEL C, et al. Climate change and the permafrost carbon feedback[J]. Nature, 2015, 520(7546): 171-179.
[2] YU Qin, YI Shuhua, DING Yongjian, et al. Effects of small-scale patchiness of alpine grassland on ecosystem carbon and nitrogen accumulation and estimation in northeastern Qinghai-Tibetan Plateau [J]. Geoderma, 2018, 318: 52-63.
[3] CHE Rongxiao, WANG Yanfen, LI Kexin, et al. Degraded patch formation significantly changed microbial community composition in alpine meadow soils [J]. Soil and Tillage Research, 2019, 195: 104426.
[4] WANG Genxu, LIU Guangsheng, LI Chunjie, et al. The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region [J]. Agricultural and Forest Meteorology, 2012, 162-163: 44-57.
[5] YU Qin, YI Shuhua, DING Yongjian, et al. Effect of plateau pika disturbance and patchiness on ecosystem carbon emissions in alpine meadow in the northeastern part of Qinghai-Tibetan Plateau [J]. Biogeosciences, 2019, 16(6): 1097-1109.
[6] DING Jinzhi, WANG Tao, PIAO Shilong, et al. The paleoclimatic footprint in the soil carbon stock of the Tibetan permafrost region [J]. Nature Communications, 2019, 10: 4195.
[7] WANG Zhiwei, WANG Qian, ZHAO Lin, et al. Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau [J]. Journal of Mountain Science, 2016, 13(6): 1035-1046.
[8] WANG Zhaoqi, ZHANG Yanzhen, YUE Yang, et al. Quantitative assess the driving forces on the grassland degradation in the Qinghai-Tibet Plateau, in China [J]. Ecological Informatics, 2016, 33: 32-44.
[9] 曹伟超,陶和平,孔博,等. 青藏高原地貌形态总体特征的GIS识别分析[J]. 水土保持通报, 2011, 31(4):163-167. [CAO Weichao, TAO Heping, KONG Bo, et al. Recognition of General Topographic Features in Qinghai-Tibet Plateau Based on GIS [J]. Bulletin of Soil and Water Conservation, 2011, 31(4): 163-167.
[10] LI Na, WANG Genxu, YANG Yan, et al. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai-Tibet Plateau[J]. Soil Biology and Biochemistry, 2011, 43(5): 942-953.
[11] ZOU Defu, ZHAO Lin, SHENG Yu, et al. A new map of permafrost distribution on the Tibetan Plateau [J]. The Cryosphere, 2017, 11(6): 2527-2542.
[12] 关松荫,张德生,张志明. 土壤酶及其研究方法[M]. 北京:农业出版社,1986: 291-294. [GUAN Songyin, ZHANG Desheng, ZHANG Zhiming. Soil enzymes and their research methods [M]. Beijing: Agriculture Press, 1986: 291-294]
[13] WU J, JOERGENSEN R G, POMMERENING B, et al. Measurement of soil microbial biomass by fumigation extraction - an automated procedure [J]. Soil Biology & Biochemistry, 1990, 22(8): 1167-1169.
[14] PENG Yunfeng, WANG Guanqin, FEI Li, et al. Unimodal response of Soil methane consumption to increasing Nitrogen additions[J]. Environmental Science & Technology, 2019, 53(8): 4150-4160.
[15] YANG Guibiao, PENG Yunfeng, MARUSHCHAK M E, et al. Magnitude and pathways of increased nitrous oxide emissions from uplands following permafrost thaw [J]. Environmental Science & Technology, 2018, 52(16): 9162-9169.
[16] KAI Fang, QIN Shuqi, CHEN Leiyi, et al. Al/Fe Mineral Controls on Soil Organic Carbon Stock Across Tibetan Alpinegrasslands [J]. Journal of Geophysical Research: Biogeosciences, 2019, 124(2): 247-259
[17] ZHAO Jingxue, TIAN Lihua, WEI Haixia, et al. Impact of plateau pika(Ochotona curzoniae)burrowing-induced microtopo-graphy on ecosystem respiration of the alpine meadow and steppe on the Tibetan plateau [J]. Plant and Soil, 2019. DOI: 10.1007/s11104-019-04122-w.
[18] LIN Xingwu, ZHANG Zhenhua, WANG Shiping, et al. Response of ecosystem respiration to warming and grazing during the growing seasons in the alpine meadow on the Tibetan plateau [J]. Agricultural and Forest Meteorology, 2011, 151(7): 792-802.
[19] DING Jinzhi, CHEN Leiyi, ZHANG Beibei, et al. Linking temperature sensitivity of soil CO2 release to substrate, environmental, and microbial properties across alpine ecosystems [J]. Global Biogeochemical Cycles, 2016, 30(9): 1310-1323.
[20] LINN D M, DORAN J W. Effect of water-filled pore-space on carbon-dioxide and nitrous-oxide production in tilled and nontilled soils [J]. Soil Science Society of America Journal, 1984, 48(6): 1267-1272.
[21] YUSTE J C, JANSSENS I A, CARRARA A, et al. Interactive effects of temperature and precipitation on soil respiration in a temperate maritime pine forest [J]. Tree Physiology, 2003, 23(18): 1263-1270.
[22] KOWALENKO C G, IVARSON K C, CAMERON D R. Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils [J]. Soil Biology and Biochemistry, 1978, 10(5): 417-423.
[23] CHEN Xiaopeng, WANG Genxu, ZHANG Tao, et al. Effects of warming and nitrogen fertilization on GHG flux in an alpine swamp meadow of a permafrost region[J]. Science of The Total Environment, 2017, 601-602:1389-1399.
[24] DORAN J W, JONES A J, RICE C W et al. Role of microbial biomass carbon and nitrogen in soil quality [J]. Methods For Assessing Soil Quality, 1997, 49: 203-215.
[25] BOND-LAMBERTY B, VANESSA L B, MIN Chen, et al. Globally rising soil heterotrophic respiration over recent decades[J]. Nature, 2018, 560(7716): 80-83.
[26] BURNS R G, DEFOREST J L, MARXSEN J, et al. Soil enzymes in a changing environment: Current knowledge and future directions[J]. Soil Biology and Biochemistry, 2013, 58:216-234.
[27] Ma Y J, Wu Y N, Liu W L, et al. Microclimate response of soil to plateau pika's disturbance in the northeast Qinghai-Tibet Plateau [J]. European Journal of Soil Science, 2018, 69(2): 232-244.
[28] CAO Guangmin, XU Xinglianh, LONG Ruijun, et al. Methane emissions by alpine plant communities in the Qinghai-Tibet Plateau [J]. Biology Letters, 2008, 4(6): 681-684.
[29] WANG Shiping, YANG Xiaoxia, LIN Xingwu, et al. Methane emission by plant communities in an alpine meadow on the Qinghai-Tibetan Plateau: a new experimental study of alpine meadows and oat pasture [J]. Biology Letters, 2009, 5(4): 535-538.
[30] 郭小伟,杜岩功,李以康,等. 高寒草甸植被层对于草地甲烷通量的影响 [J]. 水土保持研究, 2015, 22(1):146-152. [GUO Xiaowei, DU Yangong, LI Yikang et al. Effects of vegetation layers on methane flux in alpine meadow on the Tibetan Plateau [J]. Research of Soil and Water Conservation, 2015, 22(1): 146-152]
[31] DA Wei, XU Ri, TARCHEN T, et al. Considerable methane uptake by alpine grasslands despite the cold climate: in situ measurements on the central Tibetan Plateau, 2008-2013 [J]. Global Change Biology, 2015, 21(2): 777-788.
[32] DA Wei, XU Ri, TARCHEN T, et al. Revisiting the role of CH4 emissions from alpine wetlands on the Tibetan Plateau: Evidence from two in situ measurements at 4758 and 4320m above sea level [J]. Journal of Geophysical Research-Biogeosciences, 2015, 120(9): 1741-1750.
[33] NISBET R E R, FISHER R, NIMMO R H, et al. Emission of methane from plants [J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276(1660): 1347-1354.
[34] KOU Yongping, LI Jiaobao, WANG Yansu, et al. Scale-dependent key drivers controlling methane oxidation potential in Chinese grassland soils [J]. Soil Biology and Biochemistry, 2017, 111: 104-114.
[35] BODELIER P E, HENDRIKUS J L. Nitrogen as a regulatory factor of methane oxidation in soils and sediments [J]. FEMS Microbiology Ecology, 2004, 47(3): 265-277.
[36] BODELIER P E, ROSLEV P, HENCKEL T, et al. Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots [J]. Nature, 2000, 403(6768): 421-424.

相似文献/References:

[1]韩 建,占车生*,王飞宇,等.太行山区降水空间扩展方法与垂直地带性分析[J].山地学报,2017,(06):761.[doi:10.16089/j.cnki.1008-2786.000276]
 HAN Jian,ZHAN Chesheng*,WANG Feiyu,et al.Comparison of the Methods of Precipitation Spatial Expansionand Analysis of Vertical Zonality in the Taihang Mountains[J].Mountain Research,2017,(2):761.[doi:10.16089/j.cnki.1008-2786.000276]
[2]赵静毅,陈 继*,吴青柏,等.天山胜利达坂地区积雪分布特征[J].山地学报,2018,(01):98.[doi:10.16089/j.cnki.1008-2786.000305]
 ZHAO Jingyi,CHEN Ji *,WU Qingbai,et al.Variation Characteristic of Snow Cover in theShenglidaban Area, Tianshan Mountains,China[J].Mountain Research,2018,(2):98.[doi:10.16089/j.cnki.1008-2786.000305]
[3]韦小茶,周秋文*,张 继,等.1982—2016年广西NDVI时空变化及其影响因素[J].山地学报,2020,(4):520.[doi:10.16089/j.cnki.1008-2786.000530]
 WEI Xiaocha,ZHOU Qiuwen*,ZHANG Ji,et al.Spatial-Temporal Changes of NDVI and Its Influence Factors in Guangxi, China During 1982—2016[J].Mountain Research,2020,(2):520.[doi:10.16089/j.cnki.1008-2786.000530]
[4]伍丽华,康述海,陈爱玲,等.地形对杉木林土壤酚酸物质含量及微生物群落结构影响[J].山地学报,2022,(2):205.[doi:10.16089/j.cnki.1008-2786.000666]
 WU Lihua,KANG Shuhai,CHE Ailing,et al.Effects of Terrain on Soil Phenolic Acids Content and Microbial Community in Cunninghamia Lanceolata Forest[J].Mountain Research,2022,(2):205.[doi:10.16089/j.cnki.1008-2786.000666]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-12-02; 改回日期(Accepted date):2020-03-12
基金项目(Foundation item):国家自然科学基金项目(41671206); 中国科学院青年创新促进会项目(2018406)。[National Natural Science Foundation of China General Program(41671206); Youth Innovation Promotion Association, CAS(2018406)]
作者简介(Biography):李阳(1995-),男,河北邯郸人,硕士研究生,主要研究方向:寒区生态学。[LI Yang(1995-), male, born in Handai, Hebei province, M. Sc. candidate, research on ecology in cold regions] E-mail: LiYang@imde.ac.cn
*通讯作者(Corresponding author):常瑞英(1982-),男,内蒙古兴和人,博士,副研究员,主要研究方向:土壤碳氮循环。[CHANG Ruiying(1982-), male, born in Xinghe, Inner Mongolia, associate professor, research on soil carbon and nitrogen cycle]E-mail: changruiying@imde.ac.cn
更新日期/Last Update: 2020-03-30