[1]何 攀,许 强*,刘佳良,等.基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究[J].山地学报,2020,(4):571-580.[doi:10.16089/j.cnki.1008-2786.000535]
 HE Pan,XU Qiang*,LIU Jialiang,et al.Experimental Study on the Effect of Combined Water Content on Shear Strength of Remolded Loess based on NMR[J].Mountain Research,2020,(4):571-580.[doi:10.16089/j.cnki.1008-2786.000535]
点击复制

基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第4期
页码:
571-580
栏目:
山地灾害
出版日期:
2020-09-27

文章信息/Info

Title:
Experimental Study on the Effect of Combined Water Content on Shear Strength of Remolded Loess based on NMR
文章编号:
1008-2786-(2020)4-571-10
作者:
何 攀许 强*刘佳良蒲川豪陈 达
成都理工大学 地质灾害防治与地质环境保护国家重点实验室,成都 610059
Author(s):
HE Pan XU Qiang* LIU Jialiang PU Chuanhao CHEN Da
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology,Chengdu 610059, China
关键词:
重塑黄土 抗剪强度 结合水 核磁共振 T2截止值
Keywords:
remolded loess shear strength combined water NMR T2 cutoff value
DOI:
10.16089/j.cnki.1008-2786.000535
摘要:
重塑黄土抗剪强度对黄土重大工程的长期稳定与安全有着极其重要的影响,然而,由于传统测试方法的限制,对于结合水与抗剪强度之间关系的认识并不充分。本文基于无损、可靠、精确与便捷的核磁共振技术,针对不同含水率的重塑黄土开展了结合水发育特征与重塑黄土抗剪强度的试验研究。利用结合水与自由水的冰点不同,寻找二者的核磁共振信号界限—T2截止值,然后获取不同含水量直剪试样的核磁共振驰豫曲线,最后结合快剪试验分析结合水含量与土体抗剪强度的关系。试验结果表明:(1)重塑黄土内结合水含量随含水量的上升而增多,且增长趋势逐渐变缓,结合水所占比例也在不断地下降。(2)当土体内含水量增大时,并不会单独发育某一赋存状态的水,而是在某个含水率区间内主要发育某一种赋存状态的水。(3)重塑黄土中结合水的增加会导致粘聚力的降低,对内摩擦角没有明显影响。重塑黄土试样内结合水主要是通过削弱土体的粘聚力从而降低黄土土体抗剪强度,且土体内结合水含量与粘聚力c值及抗剪强度大小呈线性负相关。本文研究成果可为非饱和黄土边坡与高填方工程的稳定性计算等方面提供技术支持与理论参考。
Abstract:
Shear strength of remolded loess has a close connection with the stability and safety of major engineering projects in loess areas. Due to limitation of traditional testing methods, development characteristics of bound water and its influence on shear strength of loess were not clearly understood. In this study it performed some trials on loess based on reliable, accurate and convenient nuclear magnetic resonance(NMR)technique. In terms of the property of remolded loess, it firstly found boundary between combined water and free water according to the differences in their freezing points. Then the NMR relaxation curves of direct shear samples were obtained so as to determine the content of bound water as well as the relationship between content of bound water and shear strength of loess. The results show that:(1)Content of bound water in remolded loess increased with the addition of water content;(2)When the water content of soil body increased, the bound water or free water didn't vary independently; in case one dominate, and the other still exist in small quantities;(3)Increase of combined water content leaded to the decrease of cohesion in remolded loess, but the angle of internal friction did not change significantly, and the content of combined water was negatively correlated with c value and shear strength. This research results can provide technical support and theoretical reference for unsaturated loess slope construction and filling engineering.

参考文献/References:

[1] 王晓晨,许强,赵宽耀,等.延安市宝塔区治沟造地工程的分布规律[J].水土保持通报,2019,39(2):141-148[WANG Xiaochen, XU Qiang, ZHAO Kuanyao, et al. Distribution rule of govening valleys project in Baota district of Yan'an city[J]. Bulletin of Soil and Water Conservation,2019,39(2):141-148]
[2] 杨志全,丁攀,雨德聪,等.基于孔隙率的延安黄土抗剪强度模型[J].山地学报,2019,37(3):392-399. [YANG Zhiquan, DING Pan, YU Dechong, et al. Shear strength of Yan'an loess interpreted by porosity[J]. Mountain Research,2019,37(3):392-399]
[3] 梁谊.基于敏感性分析方法和可靠度理论的黄土高边坡稳定性研究[D].西安:西安建筑科技大学,2018:26-44.[LIANG Yi. Research on stability of loess high slope based on sensitivity analysis method and reliability theory[D]. Xi'an:Xi'an University of Architecture and Technology, 2018:26-44]
[4] 赵明华,刘小平,彭文祥. 水膜理论在非饱和土中吸力的应用研究[J]. 岩土力学, 2007(7): 1323-1327. [ZHAO Minghua, LIU Xiaoping, PENG Wenxiang. Application of aqueous film theory to study of unsaturated soil's suction[J]. Rock and Soil Mechanics, 2007(7): 1323-1327]
[5] 党进谦,李靖. 非饱和黄土的结构强度与抗剪强度[J]. 水利学报, 2001(7):79-83, 90.[DANG Jinqian, LI Jing. The structural strength and shear strength of unsaturated loess[J]. Journal of Hydraulic Engineering, 2001(7):79-83, 90]
[6] 吴凤彩.粘性土的吸附结合水测量和渗流的某些特点[J].岩土工程学报,1984(6):84-93.[WU FengCai. Some characteristics of adsorption-bonded water measurement and seepage of clay soil[J]. Chinese Journal of Geotechnical Engineering,1984(6):84-93]
[7] 胡小平. 结合水对黄土比重测定的影响[J]. 电力勘测, 1995(3):20-22.[HU Xiaoping. The influence of combined water on the determination of loess specific gravity [J]. Electric Power Survey, 1995(3):20-22]
[8] 张中华. 黄土结合水含量及其与物理指标的关系研究[C]//中国地质学会工程地质专业委员会.北京:2016年全国工程地质学术年会论文集,2016(6):1418-1423. [ZHANG Zhonghua. Study on the bound water content of loess and its relationship with physical indexes [C]. Engineering Geology Committee of China Geological Society. Proceedings of the 2016 national engineering geology annual conference. Beijing: Engineering Geology Committee of China Geological Society, 2016(6):1418-1423]
[9] 唐大雄,刘佑荣,张文殊,等. 工程岩土学[M].北京:地质出版社,1999:16-90.[TANG Daxiong, LIU Yourong, Zhang Wenshu, et al. Rock and Soil Engineering[M]. Beijing: Geological Publishing House, 1999:16-90]
[10] 何俊, 肖树芳. 结合水对海积软土流变性质的影响[J].吉林大学学报:地球科学版, 2003, 33(2): 204-207. [HE Jun, XIAO Shufang. The effect of combined water on the rheological properties of marine soft soil [J]. Journal of Jilin University(Earth Science Edition, 2003, 33(2): 204-207]
[11] JAEGER F, SHCHEGOLIKHINA A, AS H V, et al. Proton NMR relaxometry as a useful tool to evaluate swelling processes in peat soils[J]. Open Magnetic Resonance Journal, 2010, 3(2):27-45.
[12] 袁建滨. 粘土中结合水特性及其测试方法研究[D].广州:华南理工大学,2012:7-32.[YUAN Jianbin. The study for properities of bound sater on claney soils and their quantiative methods[D]. Guangzhou: South China University of Technology, 2012:7-32]
[13] 库沙柯夫,梅杰尼兹卡娅.束缚水薄层的厚度:第四届石油会议论文集[C]. 北京:石油工业出版社,1957(4):8-14.[KUSHAKOV, MEJNIZKAYA. Thickness of bound water thin layer:Proceedings of the Fourth Petroleum Conference [C].Beijing: Petroleum Industry Press,1957(4):8-14]
[14] 王铁行,李彦龙,苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-948. [WANG Tiexing, LI Yanlong, SU Lijun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-948]
[15] Alexander JÄger, Schaumann G E, Bertmer M. Optimized NMR spectroscopic strategy to characterize water dynamics in soil samples[J]. Organic Geochemistry, 2012, 42(8):917-925.
[16] ROGER MORIN, ARMAND J, SILVA. The effects of high pressure and high temperature on some physical properties of ocean sediments[J]. Journal of Geophysical Research, 1984, 89(B1): 511.
[17] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学:技术科学, 2014, 44(3): 295-305.[TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content [J]. Scientia Sinica Technologica, 2014, 44(3): 295-305]
[18] F JAEGER, S b OWE, H V AN AS, et al. Evaluation of 1H NMR relaxometry for the assessment of pore-size distribution in soil samples [J]. European Journal of Soil Science, 2009, 60(6): 1052-1064.
[19] RAZUMOVA L A. Basic principles governing the organization of soil moisture observations[J]. Hydrology, 1965, 91-500.
[20] 王平全. 粘土表面结合水定量分析及水合机制研究[D].成都:西南石油学院, 2001:92-101.[WANG Pingquan. The study for quantitative analysis for water absorbed on clays an their hydration mechanism[D]. Chengdu: Southwest Petroleum University, 2001:92-101]
[21] 邢鲜丽,李同录,李萍,等. 黄土抗剪强度与含水率的变化规律[J]. 水文地质工程地质, 2014, 41(3): 53-59, 97. [XING Xianli, LI Tonglu, LI Ping, et al. Variation regularities of loess shear strength with the moisture content [J]. Hydrogeology & Engineering Geology, 2014, 41(3):53-59, 97]
[22] 苏俊霖,董汶鑫,冯杰,等. 黏土表面结合水的低场核磁共振定量研究[J]. 钻井液与完井液, 2018, 35(1): 8-12.[SU Junling, DONG Wenxin, FENG Jie, et al. Quantitative study on surface bound sater of clay with low field NMR[J]. Drilling Fluid and Completion Fluid, 2018, 35(1): 8-12]
[23] 沈细中,管新建,兰雁.非饱和黏土有效应力强度指标计算[J].岩土力学,2007,28(增): 207-210.[SHEN Xizhong, GUAN Xinjian, LAN Yan. Calculation of effective strength indexes of unsaturated low liquid limit clay[J]. Rock and Soil Mechanics, 2007, 28(S): 207-210]
[24] 卢肇钧.粘性土抗剪强度研究的现状与展望[J].土木工程学报, 1999, 32(4): 1-9.[LU Zhaojun. Research status and prospect of shear strength of cohesive soil[J]. China Civil Engineering Journal, 1999, 32(4): 1-9]
[25] 钱勇先. 油藏条件下平面双电层的特性研究[J]. 江汉石油学院学报, 1996(3): 41-46. [QIAN Yongxian. Study on Characteristics of Planar Electric Double Layer under Reservoir Conditions[J]. Journal of Oil and Gas Technology, 1996(3): 41-46]
[26] NING LU, WILLIAM J. LIKOS. Unsaturated soil mechanics[M]. New York: John Wiley & Sons Inc, 2004: 67-92.

相似文献/References:

[1]张祖莲,梁谏杰,黄 英,等.干湿循环作用下云南红土特性与库岸边坡稳定性关系研究[J].山地学报,2018,(02):280.[doi:10.16089/j.cnki.1008-2786.000323]
 ZHANG Zulian,LIANG Jianjie,HUANG Ying,et al.On the Relationship between Characteristics of Yunnan Laterite and Stability of the Bank Slope under Wetting-Drying Cycles[J].Mountain Research,2018,(4):280.[doi:10.16089/j.cnki.1008-2786.000323]
[2]张祖莲,梁谏杰,黄 英,等.库岸边坡倾角及水位变化对红土型库岸稳定性影响研究[J].山地学报,2019,(01):62.[doi:10.16089/j.cnki.1008-2786.000399]
 ZHANG Zulian,LIANG Jianjie,HUANG Ying,et al.Investigation of the Influence of Slope Inclination and Water Level Fluctuation on the Stability of Laterite Reservoir Bank[J].Mountain Research,2019,(4):62.[doi:10.16089/j.cnki.1008-2786.000399]
[3]杨志全,丁 攀,雨德聪,等.基于孔隙率的延安黄土抗剪强度模型[J].山地学报,2019,(03):392.[doi:10.16089/j.cnki.1008-2786.000432]
 YANG Zhiquan,DING Pan,YU Decong,et al.Shear Strength of Yan'an Loess Interpreted by Porosity[J].Mountain Research,2019,(4):392.[doi:10.16089/j.cnki.1008-2786.000432]
[4]刘昌义a,胡夏嵩a*,李希来b,等.黄河源区高寒草地根—土复合体抗剪强度与土壤营养元素分布关系[J].山地学报,2020,(3):349.[doi:10.16089/j.cnki.1008-2786.000515]
 LIU Changyia,HU Xiasonga*,LI Xilaib,et al.Relationship Between Shear Strength of Root-Soil Composite Systems of Alpine Grassland and Distribution of Soil Nutrient Elements in the Source Region of the Yellow River, China[J].Mountain Research,2020,(4):349.[doi:10.16089/j.cnki.1008-2786.000515]
[5]陈伯洲,胡建华*,吴 威,等.白龙江流域不同植被类型修复模式下土壤理化性质与边坡稳定性[J].山地学报,2024,(2):260.[doi:10.16089/j.cnki.1008-2786.000821]
 CHEN Bozhou,HU Jianhua*,WU Wei,et al.Physicochemical Properties of Soil under Restoration of Different Vegetation Types and Resulting Slope Stability in the Bailong River Basin, China[J].Mountain Research,2024,(4):260.[doi:10.16089/j.cnki.1008-2786.000821]

备注/Memo

备注/Memo:
收稿日期(Received date):2019-10-23; 改回日期(Accepted date): 2020-06-23
基金项目(Foundation item):国家自然科学基金重大项目(41790445); 国家自然科学基金重点项目(41630640)。[Major Projects of the National Natural Science Foundation of China(41790445); Key Projects of National Natural Science Foundation of China(41630640)]
作者简介(Biography):何攀(1995- ),男,硕士研究生,研究方向:岩土体稳定性及工程环境效应。 [HE Pan(1995-), male, M.Sc. candidate, research on stability of rock and soil mass and engineering environmental effect] E-mail: 502751270@qq.com
*通讯作者(Corresponding author):许强(1968- ),男,博士,教授,主要从事地质灾害预测评价及防治处理方面的教学与研究工作。[XU Qiang(1968-), male, Ph.D., professor, specialized in teaching and research of geological disaster prediction and evaluation and prevention and treatment] E-mail: xq@cdut.edu.cn
更新日期/Last Update: 2020-07-30