[1]蒋 宁,苏凤环*,徐京华,等.尼泊尔地震重灾区同震滑坡的分形特征及其原因分析[J].山地学报,2020,(5):699-709.[doi:10.16089/j.cnki.1008-2786.000547]
 JIANG Ning,SU Fenghuan*,XU Jinghua,et al.Fractal Characteristics and Causes of Co-seismic Landslides in the Nepal Earthquake Extremely Stricken Areas[J].Mountain Research,2020,(5):699-709.[doi:10.16089/j.cnki.1008-2786.000547]
点击复制

尼泊尔地震重灾区同震滑坡的分形特征及其原因分析
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2020年第5期
页码:
699-709
栏目:
出版日期:
2020-11-10

文章信息/Info

Title:
Fractal Characteristics and Causes of Co-seismic Landslides in the Nepal Earthquake Extremely Stricken Areas
文章编号:
1008-2786-(2020)5-699-11
作者:
蒋 宁123苏凤环12*徐京华4葛永刚12刘 智5
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院山地灾害与地表过程重点实验室,成都 610041; 3.中国科学院大学,北京 100049; 4.西南交通大学 地球科学与环境工程学院,成都 611756; 5.四川省地质调查院,成都 610081
Author(s):
JIANG Ning123 SU Fenghuan12* XU Jinghua4GE Yonggang12 LIU Zhi5
1. Institute of Mountain Hazards and Environment, Chengdu 610041, China; 2. Key Laboratory of Mountain Hazards and Surface Process, Chinese Academy of Sciences, Chengdu 610041, China; 3. University of Chinese Academy of Sciences, Beijing 100049, China; 4. Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; 5. Sichuan Institute of Geological Survey, Chengdu 610081, China
关键词:
尼泊尔地震 同震滑坡 分形特征 关联维数 Logistic模型
Keywords:
Nepal earthquake co-seismic landslide fractal characteristic correlation dimension logistic model
分类号:
P694
DOI:
10.16089/j.cnki.1008-2786.000547
文献标志码:
A
摘要:
受“4·25”尼泊尔Ms8.1级地震影响,中尼边境山区发生了大量滑坡灾害,严重威胁人民生命安全及边疆经济建设。本文利用多时相遥感影像对震区滑坡进行了解译,引入关联维数探究了同震滑坡的空间分形特征,并结合二元Logistic模型和区域背景因素分析其形成原因。结果表明:(1)本次地震诱发的1431处滑坡大多为新生滑坡体,以浅层中小型为主,在高地震烈度区和公路两侧较为发育。受低角度逆冲断层影响,滑坡全部位于上盘,沿地震烈度圈长轴方向呈面状分布。(2)不同地震烈度区内的滑坡具有不同的分形特征,滑坡关联维数随着地震烈度等级的增大而增加,滑坡在空间上由聚集分布逐渐转变为均匀分布。(3)不同地震烈度区内的因子权重大小不同,其中距断层带距离因子对滑坡的影响最小,用该因子描述低角度逆冲断层地震同震滑坡存在一定的局限性,而坡度是对滑坡影响最大的因子。(4)在Ⅸ度地震烈度区内,各因素对滑坡的作用程度差异较小,滑坡的发生受到多因素共同控制,因此滑坡呈现相对均匀的分布特征; 反之,在Ⅵ度地震烈度区内,滑坡的发生主要受到单一因素控制,所以呈现相对聚集的分布特征。本研究可为探讨同震滑坡的空间分布规律、同震滑坡的分形特征以及震后灾害管理等提供资料参考。
Abstract:
A large number of landslides have occurred in the mountainous areas along the border between China and Nepal, which were induced by the “4.25” Nepal Ms8.1 earthquake. These landslides led to heavy casualties and damaged the economic infrastructure of the border areas. Multi-temporal remote sensing images were used to interpret and investigate the landslides in the seismic area. A correlation fractal dimension was introduced to explore the spatial fractal characteristics of the co-seismic landslides. Moreover, the causes of these characteristics were analyzed by combining the binary logistic model and regional background factors. The results showed that most of the 1431 co-seismic landslides were neogenic landslides. They were mainly small and medium shallow landslides, and they were relatively developed on both sides of the highway and high seismic intensity areas. Under the influence of the low-angle thrust fault, all the landslides were located on the upper plate and distributed along the long axis of seismic intensity circle with a plane shape. The correlation fractal dimension increased with increases in seismic intensity, and the spatial distribution of the landslides changed gradually from aggregation to uniformity. The weights of factors were found to differ for areas with different seismic intensity. The distance from the fault had the least influence and had notable limitations regarding describing the landslides induced by low-angle thrust fault earthquakes. However, the slope had the greatest influence on the landslides. In the Ⅸ seismic intensity area, the difference of each factor on the landslides was small, and the landslides in this area were affected by many factors, then they presented a relatively uniform characteristic. In contrast, in the Ⅵ seismic intensity area, the landslides were mainly affected by a single factor, and it presented a relatively aggregated characteristic. The study can provide references for the spatial distribution of co-seismic landslides, the fractal characteristics of earthquake-induced landslides, and post-earthquake disaster management.

参考文献/References:

[1] ROBACK K, CLARK M K, WEST A J, et al. The size, distribution, and mobility of landslides caused by the 2015 Mw7.8 Gorkha earthquake, Nepal[J]. Geomorphology, 2018(301): 121-138.
[2] 覃发超,史凯,张斌,等.芦山地震后初期余震时间序列的分形演化特征[J].山地学报,2013,31(4):489-494.[QIN Fachao, SHI Kai, ZHANG Bin, et al. Fractal evolution of the early aftershock sequence of Lushan earthquake[J]. Mountain Research, 2013, 31(4): 489-494]
[3] 苟娇娇,王飞,罗明良,等.基于DEM的黄土高原沟谷节点分形特征研究[J].水土保持学报,2016,30(3):109-114.[GOU Jiaojiao, WANG Fei, LUO Mingliang, et al. Fractal characteristics of Channel junctions(CJs)based on DEM[J]. Journal of Soil and Water Conservation, 2016, 30(3): 109-114]
[4] YOKOI Y, CARR J R, WATTERS R J. Fractal character of landslides[J]. Environmental & Engineering Geoscience, 1995, 1(1): 75-81.
[5] GOLTZ C. Multifractal and entropic properties of landslides in Japan[J]. Geologische Rundschau, 1996, 85(1): 71-84.
[6] 倪化勇,刘希林.泥石流粒度分维值的初步研究[J].水土保持研究,2006,13(1):89-91.[NI Huayong, LIU Xilin. A preliminary study on debris flow grain-size fractal dimension[J]. Research of Soil and Water Conservation, 2006, 13(1): 89-91]
[7] 谢嘉琼,易顺民.滑坡活动空间分布的多重分形特征及其预测意义[J].四川大学学报(工程科学版),2000,32(6):4-6.[XIE Jiaqiong, YI Shunmin. Study on the multifractal of the spatial distribution of landslides activities and its significances[J]. Journal of Sichuan University(Engineering Science Edition), 2000, 32(6): 4-6]
[8] 邱海军,崔鹏,王彦民,等.基于关联维数的黄土滑坡空间分布结构及其成因分析[J].岩石力学与工程学报,2015,34(3):546-555.[QIU Haijun, CUI Peng, WANG Yanmin, et al. Spatial distribution structure of loess landslides and cause analysis based on correlated fractal dimension[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(3): 546-555]
[9] WU Caiyan, QIAO Jianping, Wang Meng. Landslides and slope aspect in the Three Gorges Reservoir Area based on GIS and information value model[J]. Wuhan University Journal of Natural Sciences, 2006, 11(4):773-779.
[10] 倪树斌, 马超,杨海龙,等.北京山区崩塌、滑坡、泥石流灾害空间分布及其敏感性分析[J].北京林业大学学报,2018,40(6):81-91.[NI Shubin, MA Chao, YANG Hailong, et al. Spatial distribution and susceptibility analysis of avalanche, landslide and debris flow in Beijing mountain region[J]. Journal of Beijing Forestry University, 2018, 40(6): 81-91]
[11] 苏凤环,崔鹏,张建强,等.芦山地震重灾区崩塌滑坡易发性评价[J].山地学报,2013,31(4):502-509.[SU Fenghuan, CUI Peng, ZHANG Jianqiang, et al. Rockfall and landside susceptibility assessment in Lushan earthquake region[J]. Mountain Research, 2013, 31(4): 502-509]
[12] 上官冬辉,赵伟,史艳梅.尼泊尔震后Rasuwa区山地灾害遥感调查[J].遥感技术与应用,2017,32(1):78-83.[SHANG GUAN Donghui, ZHAO Wei, SHI Yanmei. Mountain hazards investigation in rasuwa district of Nepal afterthe earthquake by using remote sensing[J]. Remote Sensing Technology and Application, 2017, 32(1): 78-83]
[13] FAN Xuanmei, XU Qiang, WESTEN C J V, et al. Characteristics and classification of landslide dams associated with the 2008 Wenchuan earthquake[J]. Geoenvironmental Disasters, 2017, 4(1):12.
[14] 武新宁,易俊梅,周淑丽,等.尼泊尔Ms8.1级地震活动构造及次生地质灾害研究[J].水文地质工程地质,2017,44(4):137-144.[WU Xinning, YI Junmei, ZHOU Shuli, et al. A study on the active faults structures and geohazards triggered by the Ms8.1 earthquake in Nepal[J]. Hydrogeology and Engineering Geology, 2017, 44(4): 137-144]
[15] 杨志华,张永双,郭长宝,等.基于Newmark模型的尼泊尔Ms8.1级地震滑坡危险性快速评估[J].地质力学学报,2017,23(1):115-124.[YANG Zhihua, ZHANG Yongshuang, GUO Changbao, et al. Landslide hazard rapid assessment in the Ms 8.1 Nepal earthquake-impacted area, based on Newmark model[J]. Journal of Geomechanics, 2017, 23(1): 115-124]
[16] 黄森旺,孔纪名,崔云,等.“4·25”尼泊尔Ms 8.1地震西藏重灾区次生地质灾害空间分布规律与危险性分区[J].自然灾害学报,2017,26(1):80-88.[HUANG Senwang, KONG Jiming, CUI Yun, et al. Disasterous spatial distritution and danger zonation of secondary geological disaster in Xizhang after “4·25” Ms8.1 Nepal earthquake[J]. Journal of Natural Disasters, 2017, 26(1): 80-88]
[17] 刘亚岚,许清,郑泽忠,等.典型地震次生地质灾害多光谱遥感影像特征图谱研究[J].遥感技术与应用,2015,30(1):18-24.[LIU Yalan, XU Qing, ZHENG Zezhong, et al. Study on characteristic chart of multi-spectral remote sensing image for typical earthquake secondary geological disasters[J]. Remote Sensing Technology and Application, 2015, 30(1): 18-24]
[18] 杨晓平,吴果,陈立春,等.青藏高原南缘2015年尼泊尔Mw7.8地震发震构造[J].地球物理学报,2016,59(7):2528-2538.[YANG Xiaoping, WU Guo, CHEN Lichun, et al. The seismogenic structure of the April 25, 2015 Mw7.8 Nepal earthquake in the southern margin of Qinghai-Tibetan Plateau[J]. Chinese Journal of Geophysics, 2016, 59(7): 2528-2538]
[19] SILVERMAN B. Density estimation for statistics and data analysis[M]. London: Chapman and Hall, 1986: 4-6.
[20] 刘继生,陈彦光.城镇体系等级结构的分形维数及其测算方法[J].地理研究,1998,17(1):82-89.[LIU Jisheng, CHEN Yanguang. Fractal dimensions of spatial structure of an urban system and the methods of their determination[J]. Geographical Research, 1998, 17(1): 82-89]
[21] 刘希林,苏鹏程.南水北调西线工程泥石流灾害及危险区划[J].地学前缘,2007,14(6):188-196.[LIU Xilin, SU Pengcheng. Debris flows and zonation based on debris flow hazards in the area of the West-line Project of the South-to-North water diversion project in China[J]. Earth Science Frontiers, 2007, 14(6): 188-196]

备注/Memo

备注/Memo:
收稿日期(Received date):2018-10-24; 改回日期(Accepted date):2020-08-21
基金项目(Foundation item):第二次青藏高原综合科学考察研究资助项目(2019QZKK0902); 自然资源部中国地质调查局地质调查项目(DD20190545); 四川省科技计划项目(2019YFH0038)。 [The Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(2019QZKK0902); Geological Survey Project of China Geological Survey, Ministry of Natural Resources(DD20190545); Sichuan Foundation of Excellent Scientists(2019YFH0038)]
作者简介(Biography):蒋宁(1993-),男,河南开封人,博士研究生,主要研究方向:遥感技术与地理信息系统。[JIANG Ning(1993-), male, born in Kaifeng, Henan province, Ph.D. candidate, research on remote sensing technology and geographic information system] E-mail: jiangning@imde.ac.cn
*通讯作者(Corresponding author):苏凤环(1977-),女,山东阳谷人,博士,副研究员,主要研究方向:灾害遥感与山地灾害风险评估。[SU Fenghuan(1977-), female, born in Yanggu, Shandong province,Ph.D., associate professor, specialized in mountain hazards remote sensing and risk assessment ] E-mail: fhsu@imde.ac.cn
更新日期/Last Update: 2020-09-30