参考文献/References:
[1] BERTOLINO AVFA, FERNANDES NF, MIRANDA JPL, et al. Effects of Plough Pan development on surface hydrology and on soil physical properties in Southeastern Brazilian plateau[J]. Journal of Hydrology, 2010, 393:94-104.
[2] ZHANG J, LEI TW, CHEN TQ. Impact of preferential and lateral flows of water on single-ring measured infiltration process and its analysis[J]. Soil Science Society of America Journal, 2016, 80(4): 859-869.
[3]黄永超, 陈晓燕, 韩珍, 等. 紫色土耕层土壤基质与优先流入渗的定量计算[J]. 中国水土保持科学, 2018, 16(5): 30-39. [HUANG Yongchao, CHEN Xiaoyan, HAN Zhen, et al. Quantitative calculation of matrix infiltration and preferential infiltration in the tillage layer of purple soil [J]. Science of Soil and Water Conservation, 2018, 16(5): 30-39]
[4] HUANG YH, CHEN XY, LI FH, et al. Velocity of water flow along saturated loess slopes under erosion effects[J]. Journal of Hydrology, 2018, 561: 304-311.
[5] 邢行, 陈晓燕, 韩珍, 等. 饱和与非饱和黄绵土细沟径流水动力学特征及侵蚀阻力对比[J]. 水土保持学报, 2018, 156(3): 92-97. [XING Hang, CHEN Xiaoyan, HAN Zhen, et al. Comparation of hydrodynamic characteristics and flow resistance under rill erosion between saturated and unsaturated Loess soil[J]. Journal of Soil and Water Conservation, 2018, 156(3): 92-97]
[6] LEI TW, ZHANG QW, ZHAO J, et al. A laboratory study of sediment transport capacity in the dynamic process of rill erosion[J]. Transactions of the ASAE, 2001, 44(6): 1537-1542.
[7] 雷廷武, 张晴雯, 闫丽娟. 细沟侵蚀物理模型[M]. 北京: 科学出版社, 2009: 18. [LEI Tingwu, ZHANG Qingwen, YAN Lijuan. Physical model of rill erosion [M]. Beijing, Science Press, 2009: 18]
[8] FORSTER GR, MEYER LD. Transport of soil particles by shallow flow[J]. Transactions of the ASAE, 1972, 15(1): 99-102.
[9] JULIEN P Y, SIMONS D B. Sediment transport capacity of overland flow[J]. Transactions of the ASAE, 1985, 28(3): 755-0762.
[10] NEARING MA, NORTON LD, BULGAKOV DA, et al. Hydraulics and erosion in eroding rills[J]. Water Resources Research, 1997, 33(4): 865-876.
[11] LEI TW, NEARING MA, HAGHIGHI K, et al. Rill erosion and morphological evolution: A simulation model [J]. Water Resources Research, 1998, 34(11): 3157-3168.
[12] 周陈燕. 土壤细沟侵蚀输沙能力与剥蚀能力测量方法研究[D]. 中国农业大学, 2016: 8-9. [ZHOU Chenyan. Research on measurement methods of sediment transport capacity and detachment capacity of rill erosion [D]. China Agricultural University, 2016: 8-9].
[13] GAO XF, LI FH, CHEN C, et al. Effects of thawed depth on the sediment transport capacity by melt water on partially thawed black soil slope[J]. Land Degradation & Development, 2019, 30(1): 84-93.
[14] 张乐涛, 李占斌, 肖俊波, 等. 黄土丘陵沟壑区典型小流域不同洪水类型侵蚀输沙效应[J]. 农业机械学报, 2016, 47(8): 109-116. [ZHANG Letao, LI Zhanbin, XIAO Junbo, et al. Effects of different flood regimes on soil erosion and sediment transport in typical small watershed of loess hilly-gully region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(8):109-116].
[15] KABIR MA, DUTTA D, HIRONAKA S. Evaluation of sediment transport capacity equations using basin scale process-based sediment dynamic modelling approach[J]. Water Resources Management, 2015, 29(4): 1097-1116.
[16] JIANG FS, GAO PY, SI XJ, et al. Modelling the sediment transport capacity of flows in steep nonerodible rills[J]. Hydrological Processes, 2018, 32(26): 3852-3865.
[17] 韩珍, 王小燕, 李馨欣. 土石混合紫色土坡面水文过程的实验研究[J]. 山地学报, 2017, 35(4): 451-458. [HAN Zhen, WANG Xiaoyan, LI Xinxin. Effects of rock fragment cover on hydrological processes in purple soils[J]. Mountain Research, 2017, 35(4):451-458.]
[18] 李彦海, 陈晓燕, 韩珍, 等.紫色土细沟水流输沙能力对近地表水流作用的响应[J/OL]. 土壤学报: 1-10[2020-10-20].http://kns.cnki.net/kcms/detail/32.1119.p.20200326.1204.002.html.[LI Yanhai, CHEN Xiaoyan, HAN Zhen.Response of flow in rills to subsurface water flow in sediment transport capacity on purple soil[J]. Acta Pedologica Sinica: 1-10]
[19] 邢行. 饱和与非饱和黄绵土细沟侵蚀特征对比研究[D]. 重庆: 西南大学, 2019: 20. [XING Hang. Comparative study of rill erosion characteristics between saturated and unsaturated Loess soil [D]. Chongqing: Southwest University, 2019: 20.]
[20] 张晴雯. 细沟水蚀动力过程试验研究[D]. 杨凌: 西北农林科技大学, 2001: 22-38. [ZHANG Qingwen. Study on the dynamic process of rill erosion [D]. Yangling: Northwest Agriculture & Forestry University, 2001: 22-38]
[21] 师宏强, 刘刚, 谷举, 等. 不同坡度坡面径流输沙能力对集中流流量变化的响应[J]. 水土保持学报, 2018, 32(1): 25-31. [SHI Hongqiang, LIU Gang, GU Ju, et al. Response of sediment transport capacity under different slope to the change of concentrate flow rate[J]. Journal of Soil and Water Conservation, 2018, 32(1): 25-31]
[22] 高鹏宇, 詹振芝, 蒋芳市, 等. 坡度和流量对崩积体坡面细沟水流输沙能力的影响[J].水土保持学报, 2018, 32(3): 68-73. [GAO Pengyu, ZHAN Zhenzhi, JIANG Fangshi, et al. Effects of slope and flow on sediment transport capacity of the colluvial deposit for rill flow in Benggang[J]. Journal of Soil and Water Conservation, 2018, 32(3):68-73]
[23] 赵宇, 陈晓燕, 米宏星,等. 基于体积法对黄土细沟侵蚀沿程分布模拟的研究[J]. 土壤学报, 2014, 51(6): 1234-1241. [ZHAO Yu, CHEN Xiaoyan, MI Hongxing, et al. A volumetric method based study on distribution of erosion along rills on loess slope[J]. Acta Pedologica Sinica, 2014, 51(6): 1234-1241]
[24] 唐邦兴. 中国泥石流[M]. 北京:商务印书馆, 2000: 17. [TANG Bangxing. Debris flow in China [M]. Beijing: Commercial press, 2000: 17]
[25] CHEN C, BAN Y, WANG X, et al. Measuring flow velocity on frozen and non-frozen slopes of black soil through leading edge method[J]. International Soil & Water Conservation Research, 2017, 5(3): 180-189.
[26] ZHANG GH, LIU YM, HAN YF, et al. Sediment Transport and Soil Detachment on Steep Slopes: I. Transport Capacity Estimation[J]. Soil Science Society of America Journal, 2009, 73(4): 1291-1297.
[27] AZIZ NM, SCOTT DE. Experiments on sediment transport in shallow flows in high-gradient channels[J]. Hydrological Sciences Journal, 1989, 34(4): 465-478.
[28] 高晨烨, 张宽地, 杨明义. 基于无量纲水流强度指标的坡面流输沙能力计算方法[J]. 农业工程学报, 2018, 34(17): 134-142. [GAO Chenye, ZHANG Kuandi, YANG Mingyi. Overland flow sediment transport capacity calculation method based on non-dimensional flow intensity index[J]. Transactions of the CSAE, 2018, 34(17): 134-142]
[29] 王晨沣, 马超, 王玉杰, 等. 水力梯度影响下WEPP模型估计细沟侵蚀参数的可行性分析[J]. 农业工程学报, 2017, 33(8): 126-133. [WANG Chenfeng, MA Chao, WANG Yujie, et al. Feasibility analysis of parameters estimation for rill erosion in WEPP model under different hydraulic gradients[J]. Transactions of the CSAE, 2017, 33(8): 126-133.]
[30] ROMENKENS MJ, HELMING K, PRASAD SN. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes[J]. Catena, 2002, 46: 103-123.
[31] SIMON A, COLLISON AJC. Pore-water pressure effects on the detachment of cohesive streambeds: Seepage forces and matric suction[J]. Earth Surface Processes and Landforms, 2001, 26(13): 1421-1442.
[32] NOUWAKPO SK, HUANG CH, BOWLING L, et al. Impact of vertical hydraulic gradient on rill erodibility and critical shear stress[J]. Soil Science Society of America Journal, 2010, 74(6): 1914-1921.
[33] OSIPOV VI. Physicochemical theory of effective stress in soils [M]. Berlin: Springer, 2015: 6-10.