[1]肖森元,杨 广*,何新林,等.玛纳斯河流域MIKE SHE水文模型率定[J].山地学报,2021,(1):1-9.[doi:10.16089/j.cnki.1008-2786.000571]
 XIAO Senyuan,YANG Guang*,HE Xinlin,et al.Calibration of Hydrological Modelling by MIKE SHE for the Manas River Basin,Xinjiang, China[J].Mountain Research,2021,(1):1-9.[doi:10.16089/j.cnki.1008-2786.000571]
点击复制

玛纳斯河流域MIKE SHE水文模型率定()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第1期
页码:
1-9
栏目:
山地环境
出版日期:
2021-01-25

文章信息/Info

Title:
Calibration of Hydrological Modelling by MIKE SHE for the Manas River Basin,Xinjiang, China
文章编号:
1008-2786-(2021)1-001-09
作者:
肖森元杨 广*何新林谷新晨李小龙
石河子大学 水利建筑工程学院 现代节水灌溉兵团重点实验室,新疆 石河子 832000
Author(s):
XIAO Senyuan YANG Guang* HE Xinlin GU Xinchen LI Xiaolong
College of Water and Architectural Engineering, Shihezi University / Key Laboratory of Modern Water-Saving Irrigation, Shihezi 832000, Xinjiang, China
关键词:
MIKE SHE 径流模拟 格点数据集 玛纳斯河流域
Keywords:
MIKE SHE runoff simulation grid datasets Manas River Basin
分类号:
P339
DOI:
10.16089/j.cnki.1008-2786.000571
文献标志码:
A
摘要:
采用传统的SWAT模型模拟干旱区山区流域径流过程,无法准确反映流域水资源的空间分布特征。本文基于中国地面日值格点数据集,运用分布式水文模型 MIKE SHE模拟了1991—2015年间玛纳斯河流域水文过程。选取模型效率系数(Nash-Sutcliffe efficiency coefficient,NSE)、确定系数(R2)以及相对均方根误差(RMSE-observations standard deviation ratio,RSR)对模型适用性进行评价。流域出山口肯斯瓦特水文站实测径流数据用于模型校准及验证。最终,肯斯瓦特水文站日尺度径流仿真效率为:NSE=0.78,R2=0.85,RSR=0.47; 月尺度径流仿真效率为:NSE=0.82,R2=0.91,RSR=0.43。结果表明,MIKE SHE模型在玛纳斯河流域具有良好的适用性。本研究为干旱区山区流域水文模拟提供了参考,研究结果可为流域水资源合理配置提供科学依据。
Abstract:
Watershed models are powerful tools for simulating the effect of watershed processes and management on soil and water resources. However, the use of traditional SWAT model to simulate the runoff of the Manas River Basin cannot accurately reflect the temporal and spatial distribution characteristics of water resources in the basin. Based on the China Surface Daily Meteorology Gird Dataset issued by National Meteorological Information Center, the distributed hydrological model MIKE SHE was instead used to simulate the hydrological process in the Manas River Basin from 1991 to 2015. The Nash-Sutcliffe efficiency coefficient(NSE), the adjusted R-Square(R2)and ratio of the root mean square error to the standard deviation of measured data(RSR)were integrally employed to evaluate the applicability of the model. The results were justified by observations obtained from Kensiwate hydrological station. The daily runoff simulation efficiency at Kensiwate hydrological station were NSE=0.78, R2 =0.85, RSR=0.47 and monthly runoff simulation efficiency NSE=0.82, R2 =0.91, RSR=0.43. The simulated results revealed that the MIKE SHE model is able to simulate hydrographs satisfactorily for the Manas River Basin at daily and monthly time scales. This study provides a reference for the hydrological simulation of a mountainous basin in arid regions, and the research results can provide a scientific basis for the rational allocation of water resources in the basin.

参考文献/References:

[1] 邓铭江,龙爱华,李江,等. 西北内陆河流域“自然—社会—贸易”三元水循环模式解析[J]. 地理学报,2020,75(7):1333-1345. [DENG Mingjiang, LONG Aihua, LI Jiang, et al. Theoretical analysis of "natural-social-trading" ternary water cycle mode in the inland river basin of Northwest China [J]. Acta Geographica Sinica, 2020,75(7): 1333-1345] DOI: 10.11821/dlxb202007001
[2] 沈思民,赵军,刘佳茹,等. 祁连山TRMM降水数据降尺度不同方法比较研究[J]. 山地学报,2019,37(6):923-931. [SHEN Simin, ZHAO Jun, LIU Jiaru, et al. Comparative study on different downscaling methods of TRMM satellite precipitation data over the Qilian Mountains, China [J]. Mountain Research, 2019,37(6):923-931] DOI: 10.16089/j.cnki.1008-2786.000482
[3] TUO Ye, DUAN Zheng, DISSE M, et al. Evaluation of precipitation input for SWAT modeling in Alpine catchment: a case study in the Adige river basin(Italy)[J]. Science of the Total Environment, 2016(573):66-82. DOI: 10.1016/j. scitotenv.2016.08.034
[4] 陆文,唐家良,章熙锋,等. 山地流域水文模拟研究进展与展望[J]. 山地学报,2020,38(1):50-61. [LU Wen, TANG Jialiang, ZHANG Xifeng, et al. Hydrological simulation in mountainous region: present state and perspectives [J]. Mountain Research, 2020,38(1):50-61] DOI: 10.16089/j.cnki.1008-2786.000490
[5] TODINI E. Hydrological catchment modelling: past, present and future [J]. Hydrology & Earth System Sciences, 2007, 11(1):468-482. DOI: 10.5194/hess-11-468-2007
[6] MA Liang, HE Chunguang, BIAN Hongfeng, et al. MIKE SHE modeling of ecohydrological processes: merits, applications, and challenges [J]. Ecological Engineering, 2016(96):137-149. DOI: 10.1016/j.ecoleng.2016.01.008
[7] LIU Jiao, LIU Tie, BAO Anming, et al. Assessment of different modelling studies on the spatial hydrological processes in an arid alpine catchment [J]. Water Resources Management, 2016, 30(5): 1757-1770. DOI: 10.1007/s11269-016-1249-2
[8] RUJNER H, LEONHARDT G, MARSALEK J, et al. High-resolution modelling of the grass swale response to runoff inflows with Mike SHE [J]. Journal of Hydrology, 2018(562): 411-422. DOI: 10.1016/j.jhydrol.2018.05.024
[9] SAHOO G B, RAY C, CARLO E H D. Calibration and validation of a physically distributed hydrological model, MIKE SHE, to predict streamflow at high frequency in a flashy mountainous Hawaii stream [J]. Journal of Hydrology, 2006, 327(1/2):94-109. DOI: 10.1016/j.jhydrol.2005.11.012
[10] LAITI L, MALLUCCI S, PICCOLROAZ S, et al. Testing the hydrological coherence of high‐resolution gridded precipitation and temperature datasets [J]. Water Resources Research, 2018, 54(3): 1999-2016. DOI: 10.1002/2017WR021633
[11] ZHOU Shilun, ZHANG Wanchang, GUO Yuedong. Impacts of climate and land-use changes on the hydrological processes in the Amur River Basin [J]. Water, 2019, 12(1):76. DOI:10.3390/w12010076
[12] ANDERSEN J, SANDHOLT I, JENSEN K H, et al. Perspectives in using a remotely sensed dryness index in distributed hydrological models at the river‐basin scale [J]. Hydrological Processes, 2002, 16(15): 2973-2987. DOI: 10.1002/hyp.1080
[13] 刘蛟,刘铁,黄粤,等. 基于遥感数据的叶尔羌河流域水文过程模拟与分析[J]. 地理科学进展,2017, 36(6): 753-761. [LIU Jiao, LIU Tie, HUANG Yue, et al. Simulation and analysis of the hydrological processes in the Yarkant River Basin based on remote sensing data [J]. Progress in Geography, 2017, 36(6):753-761] DOI: 10.18306/dlkxjz.2017.06.010
[14] GU Xinchen, YANG Guang, HE Xinlin, et al. Hydrological process simulation in Manas River Basin using CMADS [J]. Open Geosciences, 2020, 12(1): 946-957. DOI: 10.1515/geo-2020-0127
[15] 张正勇. 玛纳斯河流域产流区水文过程模拟研究[D]. 新疆:石河子大学, 2018: 60-70.[ZHANG Zhengyong. Modeling hydrological processes in main runoff generating area of Manasi River Basin, Xinjiang [D]. Xinjiang: Shihezi University, 2018: 60-70]
[16] 刘斯文,刘海隆,王玲.MIKE SHE模型的发展与应用研究[J]. 水文,2018, 38(5): 23-28. [LIU Siwen, LIU Hailong, WANG Ling. Development and application of MIKE SHE model [J]. Journal of China Hydrology, 2018, 38(5): 23-28] DOI: 10.3969/j.issn.1000-0852.2018.05.005
[17] ABBOTT M B, BATHURST J C, CUNGE J A, et al. An introduction to the European Hydrological System — Systeme Hydrologique Europeen,“SHE”, 1: history and philosophy of a physically-based, distributed modelling system [J]. Journal of Hydrology, 1986, 87(1/2): 45-59. DOI: 10.1016/0022-1694(86)90114-9
[18] ABBOTT M B, BATHURST J C, CUNGE J A, et al. An introduction to the European Hydrological System — Systeme Hydrologique Europeen,“SHE”, 2: structure of a physically-based, distributed modelling system [J]. Journal of Hydrology, 1986, 87(1/2): 61-77. DOI: 10.1016/0022-1694(86)90115-0
[19] NASH J E, SUTCLIFFE J V. River flow forecasting through conceptual models part I—a discussion of principles [J]. Journal of Hydrology, 1970, 10(3): 282-290. DOI: 10.1016/0022-1694(70)90255-6
[20] SINGH J, KNAPP H V, ARNOLD J G, et al. Hydrological modeling of the Iroquois river watershed using HSPF and SWAT [J]. Journal of the American Water Resources Association, 2005, 41(2):343-360. DOI: 10.1111/j.175 2-1688.2005.tb03740.x
[21] MORIASI D N, ARNOLD J G, VAN LIEW M W, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations [J]. Transactions of the American Society of Agricultural and Biological Engineers, 2007, 50(3): 885-900. DOI: 10.13031/2013.23153
[22] REFSGAARD J C, STORM B, CLAUSEN T. Systeme Hydrologique Europeen(SHE): review and perspectives after 30 years development in distributed physically-based hydrological modelling [J]. Hydrology Research, 2010, 41(5): 355-377. DOI: 10.2166/nh.2010.009
[23] 赵煜飞,朱江,许艳. 近50a中国降水格点数据集的建立及质量评估[J]. 气象科学,2014,34(4):414-420. [ZHAO Yufei, ZHU Jiang, XU Yan. Establishment and assessment of the grid precipitation datasets in China for the past 50 years [J]. Journal of the Meteorological Sciences, 2014, 34(4):414-420] DOI: 10.39 69/2013jms.0008
[24] 陈伏龙,王怡璇,吴泽斌,等. 气候变化和人类活动对干旱区内陆河径流量的影响——以新疆玛纳斯河流域肯斯瓦特水文站为例[J]. 干旱区研究,2015, 32(4):692-697. [CHEN Fulong, WANG Yixuan, WU Zebin, et al. Impacts of climate change and human activities on runoff of continental river in arid areas—taking Kensiwate Hydrological Station in Xinjiang Manas River Basin as an example [J]. Arid Zone Research, 2015, 32(4):692-697] DOI: 10.13866/j.azr.2015.04.09

备注/Memo

备注/Memo:
收稿日期(Received date):2020-09-30, 改回日期(Accepted date): 2021-02-02
基金项目(Foundation item):国家重点研发计划水资源高效利用专项(2017YFC0404303); 新疆生产建设兵团科技项目(2021AB021); 新疆维吾尔自治区研究生科研创新项目(XJ2020G119)。[National Key Research and Development Program Water Resources Efficient Utilization Special Project(2017YFC0404303); Xinjiang Production and Construction Corps Scientific and Technological Projects(2021AB021); Xinjiang Uygur Autonomous Region Postgraduate Research and Innovation Project(XJ2020G119)]
作者简介(Biography):肖森元(1995-),男,硕士研究生,山东济宁人,主要研究方向:干旱区水文水资源。[XIAO Senyuan(1995-),male, born in Jining, Shandong province, M.Sc.candidate, research on hydrology and water resources in arid area]E-mail:senyuanxiao@foxmail.com
*通讯作者(Corresponding author):杨广(1983-),男,教授,河北新乐人,主要研究方向:干旱区水文水资源。[YANG Guang(1983-), male, born in Xinle, Hebei province, Ph. D., professor, specialized in hydrology and water resources in arid area]E-mail:mikeyork@163.com
更新日期/Last Update: 2021-01-30