[1]苏晓军a,张 毅b*,贾 俊,等.基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究[J].山地学报,2021,(1):59-70.[doi:10.16089/j.cnki.1008-2786.000576]
 SU Xiaojuna,ZHANG Yib*,JIA Jun,et al.InSAR-Based Monitoring and Identification of Potential Landslides in Lueyang County, the Southern Qinling Mountains, China[J].Mountain Research,2021,(1):59-70.[doi:10.16089/j.cnki.1008-2786.000576]
点击复制

基于InSAR技术的秦岭南部略阳县潜在滑坡灾害识别研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第1期
页码:
59-70
栏目:
山地灾害
出版日期:
2021-01-25

文章信息/Info

Title:
InSAR-Based Monitoring and Identification of Potential Landslides in Lueyang County, the Southern Qinling Mountains, China
文章编号:
1008-2786-(2021)1-059-12
作者:
苏晓军1a2张 毅1b2*贾 俊3梁懿文1b2李媛茜1b2孟兴民1b24
1.兰州大学 a资源环境学院, b地质科学与矿产资源学院, 兰州 730000; 2.甘肃省环境地质与灾害防治技术创新中心,兰州 730000; 3.中国地质调查局西安地质调查中心,西安 710054; 4.西部环境教育部重点实验室,兰州 730000
Author(s):
SU Xiaojun1a2 ZHANG Yi1b2* JIA Jun3 LIANG Yiwen1b2 LI Yuanxi1b2 MENG Xingmin1b24
1. a. College of Earth and Environmental Sciences, b. School of Earth Sciences, Lanzhou University, Lanzhou 730000, China; 2. Technology & Innovation Centre for Environmental Geology and Geohazards Prevention, Lanzhou 730000, China; 3. Xi'an Center of Geological Survey, China Geological Survey, Xi'an 710054, China; 4.Key Laboratory of Western China's Environmental Systems(Ministry of Education), Lanzhou 730000, China
关键词:
秦岭山区 滑坡 早期识别 InSAR 地表形变
Keywords:
the Qinling mountains landslide early-identification InSAR surface deformation
分类号:
K903
DOI:
10.16089/j.cnki.1008-2786.000576
文献标志码:
C
摘要:
秦岭山区因构造活动、人类活动、气候变化等多重因素作用而面临较高的地质灾害风险, 由于地形高差大、坡度陡,植被覆盖率高,滑坡灾害识别调查难度高,急需发展先进的地质灾害监测识别技术体系,提升高植被覆盖山区地质灾害隐患详细调查识别能力。不同的InSAR技术和SAR数据有各自的优势,单一InSAR技术难以在高植被覆盖山区进行区域变形监测和地质灾害隐患识别。本研究结合多种InSAR技术和不同波段SAR数据的探测优势,对秦岭南部山区略阳县城关镇的110 km2范围进行对地观测,综合光学遥感解译和野外调查,识别出滑坡地质灾害隐患点共52处。研究表明:(1)在高植被覆盖山区,D-InSAR技术和L波段SAR数据的应用,能够提升识别高植被覆盖山区潜在滑坡位置和范围的效率。而时序InSAR技术和Sentinel数据可应用于典型灾害点时间变形模式分析。(2)略阳县滑坡主要为黄土滑坡、堆积层滑坡、黄土基岩滑坡三类; 不稳定斜坡主要有陡峭风化基岩不稳定斜坡、不稳定人工边坡,破坏形式主要为基岩崩塌、剥坠落及黄土斜坡崩滑、泥流等; 本研究所识别的潜在地质灾害可为略阳县防灾减灾工作提供数据支持,提出的InSAR潜在地质灾害早期识别方法体系可为秦岭及类似高植被覆盖山区地质灾害监测识别提供方法参考。
Abstract:
The Qinling mountains has been severely haunted by geohazards, such as landslides, debris flows etc. Due to the joint geo-environmental effects of neo-tectonic movement, human activities, and climate change in the Qinling mountains, mechanism interpretation and their earlier identification of landslides had been challenging field investigators, particularly for underlying geohazards, whose occurrence state are characterized by high elevation difference, steep slope, and dense vegetation coverage. There is an urgent need to develop a practical detecting technology for determination of landslide potentials in steep mountain areas covered by dense vegetation. In this study, multiple InSAR technologies(PS-InSAR, SBAS-InSAR, and D-InSAR)and two SAR datasets(Sentinel-1A and Alos-2)were introduced into an improved procedure to solve the technical problem created by a single InSAR approach, which is only applicable to an area with little vegetation cover. The area with an area of 110 km2 in the vicinity of Chengguan district, Lueyang county,, China was targeted as case study. In this procedure, ground deformation measurement, field monitoring and optical image interpretation were calibrated and analyzed, and 52 underlying landslides were delineated in the study area. The achievements are concluded:(1)The combined use of D-InSAR and L band SAR data facilitated the recognition of underlying landslides at a regional scale in mountainous areas with dense vegetation coverage. The time-series InSAR technique and Sentinel-1A were great success in tracing the temporal deformation patterns of underlying landslides;(2)The active landslides in Lueyang county were classified into three types: loess landslides, colluvial landslides, and loess-rock landslides. Unstable slopes mainly consisted of steep weathered bedrock and artificial slopes with potential for rockfall, collapse, loess-slide and flowslide. The dataset of underlying landslides collected by present study can provide references for local authorities for disaster prevention and mitigation purpose. Our proposed procedure to underlying landslide early detection based on multiple InSAR technologies can provide a feasible technical guidance for geohazard control not only at some places of the Qinling Mountains but similar mountainous areas with dense vegetation cover.

参考文献/References:

[1] 孙果梅,况明生,曲华. 陕西秦巴山区地质灾害研究[J].水土保持研究,2005,12(5):240-243. [SUN Guomei, KUANG Mingsheng, QU Hua. Research of geological disaster in Qingling-Bashan Mountains [J]. Research of Soil and Water Conservation, 2005,12(5):240-243] DOI: 10.3969/j.issn.1005-3409.2005.05.062
[2] 黄玉华,武文英,冯卫,等.秦岭山区南秦河流域崩滑地质灾害发育特征及主控因素[J].地质通报,2015,34(11):2116-2122. [HUANG Yuhua, WU Wenying, FENG Wei, et al. Characteristics of main controlling factors of landslide in Nanqin River, Qinling Mountains [J]. Geological Bulletin of China, 2015, 34(11):2116-2122] DOI: 10.3969/j.issn.1671-2552.2015.11.018
[3] 陆松年,陈志宏,李怀坤,等.秦岭造山带中—新元古代(早期)地质演化[J].地质通报,2004,23(2):107-112. [LU Songnian, CHEN Zhihong, LI Huaikun, et al. Late Mesoproterozoic-early Neoproterozoic evolution of the Qinling orogen [J]. Geological Bulletin of China, 2004,23(2): 107-112] DOI: 10.3969/j.issn.1671-2552.2004.02.002
[4] 宁奎斌,李永红,何倩,等.2000~2016年陕西省地质灾害时空分布规律及变化趋势[J].中国地质灾害与防治学报,2018,29(1):93-101. [NING Kuibin, LI Yonghong, HE Qian, et al. The spatial and temporal distribution and trend of geological disaster in Shaanxi Province from 2000 to 2016 [J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(1): 93-101] DOI: 10.16031/j.cnki.issn.1003-8035.2018.01.15
[5] 陈玺,张毅,陈冠,等. SBAS-InSAR技术在天水市区地表形变监测中的应用[J].兰州大学学报(自然科学版),2018,54(2):143-148. [CHEN Xi, ZHANG Yi, CHEN Guan, et al. Detecting ground deformation in Tianshui City based on SBAS-InSAR [J]. Journal of Lanzhou University(Natural Sciences), 2018, 54(2): 143-148] DOI: 10.13885/j.issn.0455-2059.2018.02.001
[6] 王琳.略阳县地质灾害群测群防体系建设及典型群测群防点致灾效应研究[D].西安:长安大学, 2011: 1-10. [WANG Lin. Study on establishment the mass predietion and disaster prevention system of geologieal hazard and hazard effeet of typical geologieal disasters in Lueyang County [D]. Xi'an: Chang'an University, 2011: 1-10]
[7] 成大业.略阳县地质灾害特征及典型灾害形成机理研究[D].西安:长安大学,2011: 2-4. [CHENG Daye. The research on characteristics and formation mechanism of geological disasters in Lue Yang County [D]. Xi'an: Chang'an University, 2011: 2-4]
[8] 郭长宝,唐杰,吴瑞安,等.基于证据权模型的川藏铁路加查—朗县段滑坡易发性评价[J].山地学报,2019,37(2):240-251. [GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha-Langxian County section of Sichuan—Tibet Railway, China [J]. Mountain Research, 2019, 37(2): 240-251] DOI: 10.16089/j.cnki.1008-2786.000418
[9] 伍康林,陈宁生,胡桂胜,等.四川省盐源县玻璃村“7?19”特大滑坡灾害应急科学调查[J].山地学报,2018,36(5):806-812. [WU Kanglin, CHEN Ningsheng, HU Guisheng, et al. Emergency investigation to 7?19 landslide disaster in Boli Village, Yanyuan County, Sichuan, China [J]. Mountain Research, 2018, 36(5): 806-812] DOI: 10.16089/j.cnki.1008-2786.000376
[10] 管建军,王俊豪,王双亭,等.无人机倾斜摄影在黄土地区泥石流灾害调查与评价中的应用[J].中国地质灾害与防治学报,2017,28(4):137-145. [GUAN Jianjun, WANG Junhao, WANG Shuangting, et al. Application of UAV oblique photography in investigation and evaluation of debris flow disasters in loess area [J]. The Chinese Journal of Geological Hazard and Control, 2017, 28(4): 137-145] DOI: 10.16031/j.cnki.issn.1003-8035.2017.04.22
[11] KANG Ya, ZHAO Chaoying, ZHANG Qin, et al. Application of InSAR techniques to an analysis of the Guanling landslide [J]. Remote Sensing, 2017,9(10): 1046-1062. DOI: 10.3390/rs9101046
[12] ZHAO Chaoying, KANG Ya, ZHANG Qin, et al. Landslide identification and monitoring along the Jinsha River Catchment(Wudongde Reservoir Area), China, using the InSAR method [J]. Remote Sensing, 2018,10(7): 993-1012. DOI: 10.3390/rs10070993
[13] ZHAO Fumeng, MENG Xingmin, ZHANG Yi, et al. Landslide susceptibility mapping of Karakorum Highway combined with the application of SBAS-InSAR technology [J]. Sensors, 2019, 19(12): 2685-2702. DOI: 10.3390/s19122685
[14] 赵富萌,张毅,孟兴民,等.基于小基线集雷达干涉测量的中巴公路盖孜河谷地质灾害早期识别[J].水文地质工程地质,2020,47(1):142-152. [ZHAO Fumeng, ZHANG Yi, MENG Xingmin, et al. Early identification of geological hazards in the Gaizi valley near the Karakoran Highway based on SBAS-InSAR technology [J]. Hydrogeology & Eegineering Geology, 2020, 47(1):142-152] DOI: 10.16030/j.cnki.issn.1000-3665.201902020
[15] 姚佳明,姚鑫,陈剑,等.基于InSAR技术的缓倾煤层开采诱发顺层岩体地表变形模式研究[J].水文地质工程地质,2020,47(3):135-146. [YAO Jiaming, YAO Xin, CHEN Jian, et al. A study of deformation mode and formation mechanism of a bedding landslide induced by mining of gently inclined coal seam based on InSAR technology [J]. Hydrogeology & Eegineering Geology, 2020, 47(3):135-146] DOI: 10.16030/j.cnki.issn.1000-3665.201903072
[16] 雷坤超,陈蓓蓓,宫辉力,等.基于PS-InSAR技术的天津地面沉降研究[J].水文地质工程地质,2013,40(6):106-111. [LEI Kunchao, CHEN Beibei, GONG Huili, et al. Detection of land subsidence in Tianjin based on PS-InSAR technology [J]. Hydrogeology & Eegineering Geology, 2013,40(6):106-111] DOI: 10.16030/j.cnki.issn.1000-3665.2013.06.014
[17] 张毅.基于InSAR技术的地表变形监测与滑坡早期识别研究——以白龙江流域中游为例[D].兰州:兰州大学,2018: 28-29. [ZHANG Yi. Detecting ground deformation and investigating landslides using InSAR technique—taking middle reach of Bailong River Basin as an example [D]. Lanzhou: Lanzhou University, 2018: 28-29]
[18] 董志海. 象山不稳定斜坡变形破坏机理研究[D]. 西安:长安大学,2014: 6-14.[DONG Zhihai. Research on the deformation mechanism of Xiangshan slope [D]. Xi'an: Chang'an University, 2014: 6-14]
[19] 王树丰. 汶川地震滑坡微型桩防治工程研究——以陕西略阳凤凰山滑坡为例[D]. 西安:长安大学, 2010: 13-17. [WANG Shufeng. Research on the prevention engineering of micropilr for landslides triggered by Wenchuan Earthquake——by taking the Phoenix Mountain landslide at Lueyang County, Shaanxi Province as an example [D]. Xi'an: Chang'an University, 2010:13-17]
[20] 刘坤.白雀寺滑坡复活机理及稳定性研究[D]. 西安:长安大学,2015: 7-9. [LIU Kun. Research on the revival mechanism and stability of Baiquesi landslide [D]. Xi'an: Chang'an University, 2015: 7-9]
[21] 张楠.陕西省略阳县重点生态功能区保护和建设规划研究[D]. 西安:长安大学,2014: 15. [ZHANG Nan. Study on the protection and construction planning of Shaanxi Lveyang national key ecological function zones [D]. Xi'an: Chang'an University, 2014: 15]
[22] 刘宪锋,潘耀忠,朱秀芳,等.2000-2014年秦巴山区植被覆盖时空变化特征及其归因[J].地理学报,2015,70(5):705-716. [LIU Xianfeng, PAN Yaozhong, ZHU Xiufang, et al. Spatiotemporal variation of vegetation coverage in Qinling-Daba Mountains in relation to environmental factors [J]. Acta Geographica Sinica, 2015, 70(5): 705 - 716] DOI: 10.11821/dlxb201505003
[23] 崔晓临,白红英,王涛.秦岭地区植被NDVI海拔梯度差异及其气温响应[J].资源科学,2013,35(3):618-626. [CUI Xiaolin, BAI Hongying, WANG Tao. Difference in NDVI with altitudinal gradient and temperature in Qinling Area [J]. Resources Science, 2013, 35(3): 618-626]
[24] 王涛,白红英.秦岭山地植被NDVI对气候变化与人类活动的响应[J].山地学报,2017, 35(6):778-789. [WANG Tao, BAI Hongying. Variation of vegetation NDVI in response to climate changes and human activities in Qinling Mountains [J]. Mountain Research, 2017, 35(6): 778-789] DOI: 10.16089/j.cnki.1008-2786.000278
[25] HOOPER A, ZEBKER H, SEGALL P, et al. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers [J]. Geophysical Research Letters, 2004,31(L23611). DOI: 10.1029/2004GL021737
[26] BERARDINO P, FORNARO G, LANARI R, et al. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms [J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2375-2383. DOI: 10.1109/TGRS.2002.803792
[27] BERARDINO P, COSTANTINI M, FRANCESCHETTI G, et al. Use of differential SAR interferometry in monitoring and modelling large slope instability at Maratea(Basilicata, Italy)[J]. Engineering Geology, 2003,68(1): 31-51. DOI: 10.1016/S0013-7952(02)00197-7
[28] MASSONNET D, ROSSI M, CARMONA C, et al. The displacement field of the Landers earthquake mapped by radar interferometry [J]. Nature, 1993,364(6433): 138-142. DOI: 10.1038/364138a0
[29] USAI S, KLEES R. SAR interferometry on a very long time scale: a study of the interferometric characteristics of man-made features [J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(4): 2118-2123. DOI: 10.1109/36.774730

相似文献/References:

[1]王帮团,徐则民,王帮圆,等.根-土间隙对斜坡降雨入渗的贡献——以头寨和段家营地区为例[J].山地学报,2016,(04):393.[doi:10.16089/j.cnki.1008-2786.000143]
 WANG Bangtuan,XU Zemin,WANG Bangyuan,et al.The Contribution of Soil-root Interstice to Rainfall Infiltration on a Vegetated Slope:A Case Study at the Duanjiaying and Touzhai Area,Yunnan Province,China[J].Mountain Research,2016,(1):393.[doi:10.16089/j.cnki.1008-2786.000143]
[2]张 磊,徐则民*,侯汝几,等.植被发育玄武岩斜坡土体基质吸力及其影响因素[J].山地学报,2016,(05):513.[doi:10.16089/j.cnki.1008-2786.000157]
 ZHANG Lei,XU Zemin,HOU Ruji,et al.Soil Matric Suction and Its Influencing Factors on a Well Vegetated Basalt Slope[J].Mountain Research,2016,(1):513.[doi:10.16089/j.cnki.1008-2786.000157]
[3]丁 苗,白世彪*,王 建,等.利用树木年轮重建滑坡复活时间的方法[J].山地学报,2016,(05):545.[doi:10.16089/j.cnki.1008-2786.000161]
 DING Miao,BAI Shibiao,WANG Jian,et al.Basic Procedures of Using Tree Rings to Reconstruct the Ttime of Landslide Reactivation[J].Mountain Research,2016,(1):545.[doi:10.16089/j.cnki.1008-2786.000161]
[4]赵 培*,王群盈,刘志鹏.秦岭山区沟渠植物和土壤CNP生态化学计量特征[J].山地学报,2017,(05):753.[doi:10.16089/j.cnki.1008-2786.000275]
 ZHAO Pei*,WANG Qunying,LIU Zhipeng.The Stoichiometric Characteristics of C,N,P for Plants and Soil in the Ditches at Shangluo City of Qinling Mountain[J].Mountain Research,2017,(1):753.[doi:10.16089/j.cnki.1008-2786.000275]
[5]郭长宝,等.基于证据权模型的川藏铁路加查--朗县段滑坡易发性评价[J].山地学报,2019,(02):240.[doi:10.16089/j.cnki.1008-2786.000418]
 GUO Changbao,TANG Jie,et al.Landslide Susceptibility Assessment Based on WOE Model along Jiacha-Langxian County Section of Sichuan -Tibet Railway, China[J].Mountain Research,2019,(1):240.[doi:10.16089/j.cnki.1008-2786.000418]
[6]孙萍萍,张茂省*,程秀娟,等.黄土高原地质灾害发生规律[J].山地学报,2019,(05):737.[doi:10.16089/j.cnki.1008-2786.000464]
 SUN Pingping,ZHANG Maosheng*,CHENG Xiujuan,et al.On the Regularity of Geological Hazards on the Loess Plateau in China[J].Mountain Research,2019,(1):737.[doi:10.16089/j.cnki.1008-2786.000464]
[7]吴 杰,陈 冠*,孟兴民,等.白龙江流域滑坡降雨临界值[J].山地学报,2022,(6):875.[doi:10.16089/j.cnki.1008-2786.000720]
 WU Jie,CHEN Guan*,MENG Xingmin,et al.Rainfall Threshold of Landslides in the Bailong River Basin, China[J].Mountain Research,2022,(1):875.[doi:10.16089/j.cnki.1008-2786.000720]

备注/Memo

备注/Memo:
收稿日期(Received date):2020-05-4; 改回日期(Accepted date): 2020-12-29
基金项目(Foundation item):甘肃省科技重大专项(19ZD2FA002); 国家重点研发计划项目(2017YFC1501005); 兰州大学中央高校基本科研业务费专项资金(lzujbky-2019-28); 自然资源部中国地质调查局地质调查项目(DD20190714)。[Science and Technology Major Project of Gansu Province(19ZD2FA002); National Key Research and Development Program of China(2017YFC1501005); Fundamental Research Funds for the Central University(lzujbky-2019-28); Project of China Geological Survey(DD20190714)]
作者简介(Biography):苏晓军( 1995-),男,青海互助县人,博士研究生,主要研究方向:环境遥感、地质灾害监测与评价。[SU Xiaojun(1995-), male, born in Huzhu County of Qinghai Province, Ph.D. candidate, research on environmental remote sensing, geological disaster monitoring and assessment]E-mail: suxj19@lzu.edu.cn
*通讯作者(Corresponding author):张毅(1991-),男,甘肃兰州人,博士,讲师,研究方向:遥感与地质灾害监测预警。[ZHANG Yi(1991-), male, born in Lanzhou, Gansu province, Ph.D., Assistant professor, specialized in remote sensing, geohazard monitoring and early warning research] E-mail: zhangyigeo@lzu.edu.cn
更新日期/Last Update: 2021-01-30