[1]白艺彤,等.泥石流造床运动的实验研究[J].山地学报,2021,(3):346-355.[doi:10.16089/j.cnki.1008-2786.000601]
 BAI Yitong,SONG Dongri,et al.Experimental Study on Paving Process of Debris Flow[J].Mountain Research,2021,(3):346-355.[doi:10.16089/j.cnki.1008-2786.000601]
点击复制

泥石流造床运动的实验研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第3期
页码:
346-355
栏目:
山地灾害
出版日期:
2021-05-25

文章信息/Info

Title:
Experimental Study on Paving Process of Debris Flow
文章编号:
1008-2786-(2021)3-346-10
作者:
白艺彤1 2宋东日1 2*
1.中国科学院、水利部成都山地灾害与环境研究所,成都 610041; 2.中国科学院大学,北京 100392
Author(s):
BAI Yitong1 2 SONG Dongri1 2*
1. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041,China; 2. University of Chinese Academy of Sciences, Beijing 100039, China
关键词:
泥石流 铺床作用 流动状态 流动速度 流动深度
Keywords:
debris flow paving effect flow regime flow velocity flow depth
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000601
文献标志码:
A
摘要:
“泥石流铺床现象”常被用来定性地解释黏性泥石流(特指高固相含量)运动的减阻效应。目前,铺床现象对泥石流运动的影响研究仍处于定性阶段,定量化的机理研究非常匮乏。本研究设计了中尺度水槽模型实验,对泥石流铺床作用的动力学过程开展了系统观测。以云南蒋家沟泥石流堆积为材料,配置了40%、50%、55%三种固相浓度对比组; 实验观测了泥石流流动过程中运动特征,采集了基底正应力、剪应力、孔隙水压力及流动深度参数。实验结果表明:(1)稀性泥石流运动过程中存在微弱的铺床现象,铺床现象并非独属于黏性泥石流;(2)铺床所形成的残留层不一定是单阵泥石流贡献的,而可能是经连续过程逐步形成的。残留层的厚度随泥石流固相浓度的增加而增加。当后继泥石流流经残留层时,由于残留层的液化状态和较低的基底阻力,后继泥石流的作用力可以透过残留层传递至基底,残留层极易被后继泥石流体裹挟运动;(3)铺床过程显著改变了后继泥石流运动的边界条件,因而铺床作用能够提高泥石流流动速度、流动深度及相应的冲击力,且铺床效应随泥石流固相浓度升高而愈发显著。本研究不仅明确了泥石流造床运动的物理过程,并基于实测参数对铺床过程进行了机理阐述,填充了泥石流铺床研究的实验空白,对深入理解泥石流动力学具有重要意义。
Abstract:
“Paving process of debris flow” is often used to explain the reduction in flow resistance of dense(high solid concentration)debris flows. Current research on this paving process is mostly qualitative, and only a handful of works provide a quantitative definition to its underlying mechanisms. In this study, mesoscale flume model experiments were designed to systematically investigate the dynamic paving process in debris flows. Debris flows with volumetric solid concentrations of 40%, 50%, and 55% were modelled using aggregates from debris flow deposits in the Jiangjia Gulley, Yunnan province, China. The kinetics of debris flows were observed and the measurements of their normal stress, shear stress, pore water pressure, and flow depth were collected. Experimental results reveal that:(1)The paving process was not unique to dense debris flows but could also be observed, although to a lesser extent, in dilute flows.(2)The paving process left a residual layer which was formed, not necessarily by a single debris flow surge, but gradually following successive debris flow surges. The thickness of residual layer increased with the solid concentration. The residual layer was highly liquefied and thus was characterized with a low flow resistance. Forces from subsequent flows were transmitted to the residual layer, leading to its subsequent entrainment and transport.(3)The paving process significantly changed the boundary conditions of the subsequent debris flow movement, and then increased the flow velocity, and flow depth, as well as the impact force experienced by countermeasures. The paving effect became more significant as the solid concentration increased. This research not only clarifies the physical process, but also explains the mechanisms of the paving process based on the measured parameters, filling the experimental gaps in the study of debris flow paving process, and could be of great significance for in-depth understanding of debris flow dynamics.

参考文献/References:

[1] RICKENMANN D. Empirical relationships for debris flows [J]. Natural Hazards, 1999, 19(1): 47-77. DOI: 10.1023/A: 1008064220727
[2] IVERSON R M. The physics of debris flows [J]. Reviews of Geophysics, 1997, 35(3): 245-296. DOI: 10.1029/97RG00426
[3] 田连权,吴积善,康志成,等.泥石流侵蚀搬运与堆积[M].成都: 成都地图出版社, 1993: 34-114.[TIAN Lianquan, WU Jishan, KANG Zhicheng, et al. Erosion, transportation and deposition of debris flow [M]. Chengdu: Chengdu Cartographic Publishing House, 1993:34-114]
[4] 吴积善,田连权,康志成,等.泥石流及其综合治理[M].北京:科学出版社,1993:17-191. [WU Jishan, TIAN Lianquan, KANG Zhicheng, et al. Debris flow and its comprehensive control [M]. Beijing: Science Press, 1993:17-191]
[5] 康志成, 李焯芬, 马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004:139-185. [KANG Zhicheng, LEE Chackfan, MA Ainai, et al. Debris flow research in China[M]. Beijing: Science Press, 2004: 139-185]
[6] 吴积善,康志成,田连权,等.云南蒋家沟泥石流观测研究[M].北京:科学出版社,1990:99-139. [ WU Jishan, KANG Zhicheng, TIAN Lianquan, et al. Observation and research of debris flow in Jiangjia Valley in Yunnan province [M]. Beijing: Science Press, 1990: 99-139]
[7] 张军,吴积善,游勇,等.黏性泥石流残留层的形成及减阻作用--以云南蒋家沟泥石流为例[J].山地学报,2003,21(2):223-227.[ZHANG Jun, WU Jishan, YOU Yong, et al. Formation of residue layer of debris flow and the reduction of resistance [J]. Mountain Research, 2003,21(2):223-227] DOI: 10.3969/j.issn.1008-2786.2003.02.014
[8] 王兆印,崔鹏,余斌.泥石流的运动机理和减阻[J].自然灾害学报,2001,10(3):37-43. [WANG Zhaoyin, CUI Peng, YU Bin. The mechanism of debris flow and drag reduction [J]. Journal of Natural Disasters, 2001, 10(3): 37-43] DOI: 10.3969/j.issn.1004-4574.2001.03.007
[9] 吴积善,张军,程尊兰,等.黏性泥石流的泥深与残留层关系及其确定[J].泥沙研究,2003(6):7-12.[WU Jishan, ZHANG Jun, CHENG Zunlan, et al. Relation and its determination of residual layer and depth of viscous debris flow [J]. Journal of Sediment Research, 2003(6): 7-12] DOI: 10.3321/j.issn:0468-155X.2003.06.002
[10] 胡凯衡,韦方强,李泳,等.泥石流的阵性波状运动[J].山地学报, 2004,22(6):707-712. [HU Kaiheng, WEI Fangqiang, LI Yong, et al. Characteristics of debris-flow surge [J]. Mountain Research, 2004,22(6): 707-712] DOI: 10.3969/j.issn.1008-2786.2004.06.012
[11] 康志成.云南东川蒋家沟黏性泥石流流速的初步分析[G]//中国科学院兰州冰川冻土研究所. 中国科学院兰州冰川冻土研究所集刊(4),北京:科学出版社,1985:119-123.[KANG Zhicheng. Preliminary analysis of the velocity of viscous debris flow in Jiangjiagou, Dongchuan, Yunnan [G]// Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Proceedings(4)of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences,Beijing: Science Press, 1985: 119-123]
[12] 刘晶晶,李泳.黏性泥石流残留层的床面减阻研究综述[J].泥沙研究, 2016(3):72-80.[LIU Jingjing, LI Yong. A review of study on drag reduction of viscous debris-flow residual layer [J]. Journal of Sediment Research, 2016(3): 72-80] DOI: 10.16239/j.cnki.0468-155x.2016.03.011
[13] 张军,熊刚.云南蒋家沟泥石流运动观测资料集[M].北京:科学出版社, 1997: 1-44.[ZHANG Jun, XIONG Gang. Data collection of kinematic observation of debris flows in Jiangjia Ravine, Dongchuan,Yunnan [M]. Beijing: Science Press, 1997: 1-44]
[14] 甘肃省交通科学研究所,中国科学院兰州冰川冻土研究所. 泥石流地区公路工程[M]. 北京:人民交通出版社,1981:64-143. [Gansu Transportation Research Institute, Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Highway engineering in debris flow area [M]. Beijing: People's Communications Press, 1981:64-143]
[15] 杜榕桓,康志成,陈循谦,等. 云南小江泥石流综合考察与防治规划研究[M].重庆:科学技术文献出版社重庆分社, 1987:94-175. [DU Ronghuan, KANG Zhicheng, CHEN Xunqian, et al. Research on comprehensive investigation and prevention and control planning of debris flow in Xiaojiang, Yunnan [M]. Chongqing: Science and Technology Literature Publishing House Chongqing Branch, 1987:94-175]
[16] IVERSON R M, GEORGE D L. A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis [J]. Proceedings of the Royal Society A, 2014, 470: 20130819. DOI: 10.1098/rspa.2013.0820
[17] IVERSON R M. Scaling and design of landslide and debris-flow experiments [J]. Geomorphology, 2015, 244: 9-20. DOI: 10.1016/j.geomorph.2015.02.033
[18] CHOI C E, Ng CWW, Au-Yeung SCH, Goodwin G. Froude characteristics of both dense granular and water flows in flume modelling [J]. Landslides, 2015, 12(6): 1197-1206. DOI:10.1007/s10346-015-0628-8
[19] IVERSON R M, LOGAN M, DENLINGER R P. Granular avalanches across irregular three-dimensional terrain: 2. Experimental tests [J]. Journal of Geophysical Research, 2004, 109:F01015. DOI: 10.1029/2003JF000084
[20] 宋东日,周公旦,CHOI Clarence Edward,等. 土工离心机模拟泥石流问题的相似性考虑[J]. 岩土工程学报,2019,41(12):2262-2271. [SONG Dongri, ZHOU Gongdan, CHOI C E, et al. Scaling principles of debris flow modeling using geotechnical centrifuge [J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2262-2271] DOI: 10.11779/CJGE201912011
[21] 韦方强,胡凯衡.泥石流流速研究现状与发展方向[J].山地学报,2009,27(5):545-550.[WEI Fangqiang, HU Kaiheng. Review and trends on debris flow velocity research[J]. Mountain Research, 2009, 27(5): 545-550] DOI: 10.3969/j.issn.1008-2786.2009.05.005
[22] ARATTANO M, FRANZI L. On the evaluation of debris flows dynamics by means of mathematical models [J]. Natural Hazards and Earth System Sciences, 2003, 3(6): 539-544. DOI: 10.5194/nhess-3-539-2003

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(3):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(3):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(3):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(3):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(3):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(3):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(3):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(3):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(3):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(3):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2021-04-05; 改回日期(Accepted date):2021-06-10
基金项目(Foundation item):国家自然科学基金(42077256,51809261); 四川省科技计划资助项目(2020YJ0002)。[National Natural Science Foundation of China(42077256,51809261); Sichuan Science and Technology Program(2020YJ0002)]
作者简介(Biography):白艺彤(1996-),男,河北邯郸人,硕士研究生,主要研究方向:山地灾害防灾减灾工程。[BAI Yitong(1996-), male, born in Handan, Hebei province, M.Sc.candidate, research on debris flow hazard mitigation] E-mail: baiyitong18@mails.ucas.ac.cn.
*通讯作者(Corresponding author):宋东日(1987-),男,山东莱阳人,博士,研究员,主要研究方向:泥石流冲击动力学及工程防护。[SONG Dongri(1987-), male, born in Laiyang, Shandong province, Ph.D., professor, research on debris flow impact dynamics and engineering mitigation] E-mail: drsong@imde.ac.cn
更新日期/Last Update: 2021-05-30