[1]张馨仁a,b,王 瑛a,等.山洪灾害建筑物脆弱性曲线研究进展[J].山地学报,2021,(3):356-366.[doi:10.16089/j.cnki.1008-2786.000602]
 ZHANG Xinrena,b,WANG Yinga,et al.Research Progress of Building Vulnerability Curve Associated with Mountain Torrent[J].Mountain Research,2021,(3):356-366.[doi:10.16089/j.cnki.1008-2786.000602]
点击复制

山洪灾害建筑物脆弱性曲线研究进展()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第3期
页码:
356-366
栏目:
山地灾害
出版日期:
2021-05-25

文章信息/Info

Title:
Research Progress of Building Vulnerability Curve Associated with Mountain Torrent
文章编号:
1008-2786-(2021)3-356-11
作者:
张馨仁a b王 瑛ab*刘天雪ab陈 宇ab
北京师范大学 a.环境演变与自然灾害教育部重点实验室; b.减灾与应急管理研究院,北京 100875
Author(s):
ZHANG Xinrenab WANG Yingab* LIU Tianxueab CHEN Yuab
a. Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education; b. Academy of Disaster Reduction and Emergency Management, Beijing Normal University, Beijing 100875, China
关键词:
山洪灾害 脆弱性曲线 建筑物结构类型 致灾强度 灾害保险
Keywords:
mountain torrent disaster vulnerability curve types of building structure hazard intensity disaster insuranc
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000602
文献标志码:
A
摘要:
山洪灾害会给受灾区带来巨大的人员伤亡和经济损失。房屋脆弱性分析是山洪风险研究的关键部分,而现有山洪灾害建筑物脆弱性曲线研究在数据来源、脆弱性量化、指标选择和曲线精度等方面仍缺少规范和标准。因此,本研究分别从脆弱性曲线的建立方法和多种致灾强度指标两个角度进行总结,为山洪脆弱性研究前景和中国山洪灾害防治提供参考。主要结论如下:(1)脆弱性曲线数据通常采用灾情调查数据、模型或实验模拟数据,也可以根据已有曲线进行本地化改进,或者提前调查房屋及内部财产高度的系统调查法。(2)致灾强度指标包括水深、流速、冲击压力、沉积深度等,其中水深和沉积深度脆弱性曲线研究相对较多。脆弱性相对一致的是砖混结构类建筑,100%损毁的致灾强度大约为:流速3.8 m·s-1,冲击压力44.5 kPa,沉积深度3 m。(3)各类建筑结构的脆弱性排序为:木框架结构>砖混结构>钢混结构。通过对研究现状和存在问题的分析,以及不同结构类型房屋损失状况的归纳,本研究认为未来山洪建筑物脆弱性曲线研究可以开展多源数据、多技术、多曲线的集成和共享,中国在修建山区建筑时应多借鉴其他国家经验,增强房屋的抗洪能力。
Abstract:
Mountain torrent disaster is one of the main type of geohazards causing casualties in China. Damages in constructions inflicted by torrential floods not only directly threatens people's lives and properties downstream, but also is an essential component of economic losses. As a key data-dependent approach to accurately quantify the assessment of disaster risk, a vulnerability curve introduced a quantitative relationship between the intensity of a disaster process and the vulnerability of relevant disaster-bearing bodies(such as personnel, property, infrastructure, etc.). In this study, the research progress of building vulnerability curve associated with mountain torrent was summarized from two perspectives:(1)the methods to determine vulnerability curve, and(2)indexes of disaster-prone intensity, so as to provide reference for the new direction of development and the prevention of mountain torrent disaster in China. The conclusions are as follows:(1)As to the data sources of a vulnerability curve, it generally originated from field survey, modelling or laboratory works, and localized improvement on existing curves could also be applicable, or an early investigation could be comprehensively conducted on the height of damaged buildings as well as the indoor properties.(2)The indexes of disaster-prone intensity referred water depth, flow velocity, impact pressure, sediment depth, etc., among which more research attentions were paid to water depth and sediment depth for creating a vulnerability curve. A brick-concrete structure, regardless of its location in case of suffering a 100% damage, must be under a specific damage-causing intensity as reference to 3.8 m·s-1 in flow rate, 44.5 kPa in impact pressure and 3 m in sediment depth.(3)As per strength indexes, the vulnerability of all kinds of building structures followed the following order: wood frame structure > brick-concrete structure > steel-concrete structure. There are great discrepancy among countries in producing building vulnerability curves associated with mountain torrent. In the case of 3 m in water depth, the loss rate for brick-wood structure houses in rural areas of China was over 90%, whereas in Italy it was only about 70% for typical alpine masonry structure houses. In Greece, a Mediterranean country, the loss rate of reinforced concrete buildings to be built strictly according to seismic codes was less than 20%. In addition, for buildings with the same structural type, the longer the service life, the greater the vulnerability were, and low buildings were more susceptible to damage. In future research on building vulnerability curve associated with mountain torrent, multi-source data, multi-technology and multi-curve are supposed to be integrated and shared. Lessons from the flood-relief experiences of other countries should be learned for enhancement of flood resistance of mountain buildings of China.

参考文献/References:

[1] GOURLEY J J, FLAMIG Z L, VERGARA H, et al. The flash project: Improving the tools for flash flood monitoring and prediction across the United States [J]. Bulletin of the American Meteorological Society, 2017, 98(2):361-372. DOI: 10.1175/BAMS-D-15-00247.1
[2] 谢平,陈广才,李德,等. 乌鲁木齐地区小流域设计山洪推理公式的参数规律[J]. 山地学报,2006,24(4):410-415. [XIE Ping, CHEN Guangcai, LI De, et al. Study on the parameter laws of rational formula for design flash flood calculation of small basins in Urumchi region [J]. Mountain Research, 2006, 24(4):410-415] DOI: 10.3969/j.issn.1008-2786.2006.04.004
[3] 刘志雨. 山洪预警预报技术研究与应用[J]. 中国防汛抗旱,2012,22(2):41-45+50. [LIU Zhiyu. Study and application of flash flood forecast and warning [J]. China Flood and Drought Management, 2012, 22(2):41-45+50]DOI: 10.16867/j.cnki.cfdm.2012.02.014
[4] 熊俊楠,龚颖,程维明,等. 西藏自治区近30年山洪灾害时空分布特征[J]. 山地学报,2018,36(4):557-570. [XIONG Junnan, GONG Ying, CHENG Weiming, et al. Temporal and spatial distribution characteristics of mountain floods in Tibet, China in recent 30 years [J]. Mountain Research, 2018, 36(4):557-570] DOI: 10.16089/j.cnki.1008-2786.000352
[5] 魏一鸣,范英,金菊良. 洪水灾害风险分析的系统理论[J]. 管理科学学报,2001,4(2):7-11+44. [WEI Yiming, FAN Ying, JIN Juliang. System theory for risk analysis of flood disaster [J]. Journal of Management Sciences in China, 2001, 4(2):7-11+44] DOI: 10.3321/j.issn:1007-9807.2001.02.002
[6] 王楠,程维明,张一驰,等. 全国山洪灾害防治县房屋损毁风险评估及原因探究[J]. 地球信息科学学报,2017,19(12):1575-1583. [WANG Nan, CHENG Weiming, ZHANG Yichi, et al. Reasons and risk assessment of housing damage in the national mountain torrent disaster prevention county [J]. Journal of Geo-information Science, 2017, 19(12):1575-1583] DOI: 10.3724/SP.J.1047.2017.01575
[7] 史培军. 四论灾害系统研究的理论与实践[J]. 自然灾害学报,2005,14(6):1-7. [SHI Peijun. Theory and practice on disaster system research in a fourth time [J]. Journal of Natural Disasters, 2005, 14(6):1-7] DOI: 10.3969/j.issn.1004-4574.2005.06.001
[8] 周瑶,王静爱. 自然灾害脆弱性曲线研究进展[J]. 地球科学进展,2012,27(4):435-442. [ZHOU Yao, WANG Jingai. A review on development of vulnerability curve of natural disaster [J]. Advances in Earth Science, 2012, 27(4):435-442]
[9] CROWLEY J M, WHITE G F. Choice of adjustment to floods. University of Chicago, Department of Geography Research Paper No. 93. Chicago, 1964. 150 pages, notes bibliographiques infrapaginales, appendice par John E. Edinger [J]. Cahiers de Géographie du Québec, 1964, 9(17):121–122. DOI: 10.7202/020547ar
[10] DE LOTTO P, TESTA G. Risk assessment: A simplified approach of flood damage evaluation with the use of GIS [G]// Proceedings of Internationales Symposion Interpraevent 2000-Villach(Austria)/Osterreich, Italy, 2000, 2:281-291.
[11] FUCHS S, HEISS K, HÜBL J. Towards an empirical vulnerability function for use in debris flow risk assessment [J]. Natural Hazards and Earth System Sciences, 2007, 7(5):495-506. DOI: 10.5194/nhess-7-495-2007
[12] AKBAS S O, BLAHUT J, STERLACCHINI S. Critical assessment of existing physical vulnerability estimation approaches for debris flows [G]//MALET J P, REMAITRE A, BOGAARD T. Proceedings of Landslide Processes: From Geomorphologic Mapping to Dynamic Modeling, CERG Editions, Strasbourg, France, 2009, 67:229-233.
[13] TOTSCHNIG R, FUCHS S. Mountain torrents: Quantifying vulnerability and assessing uncertainties [J]. Engineering Geology, 2013, 155(2): 31-44. DOI: 10.1016/j.enggeo.2012.12.019
[14] PAPATHOMA-KÖHLE M, ZISCHG A, FUCHS S, et al. Loss estimation for landslides in mountain areas: An integrated toolbox for vulnerability assessment and damage documentation [J]. Environmental Modelling & Software, 2015, 63(1):156-169. DOI: 10.1016/j.envsoft.2014.10.003
[15] KARAGIORGOS K, THALER T, HÜBL J, et al. Multi-vulnerability analysis for flash flood risk management [J]. Natural Hazards, 2016, 82(1):1-25. DOI: 10.1007/s11069-016-2296-y
[16] 李亚娥,司应石,徐忠浩,等. 山洪作用对砌体结构倒塌破坏的分析[J]. 低温建筑技术,2013,35(9):51-54. [ LI Yae, SI Yingshi, XU Zhonghao, et al. Under the action of mountain torrents on the analysis of the masonry structural collapse destroyed [J]. Low Temperature Architecture Technology, 2013, 35(9):51-54] DOI: 10.3969/j.issn.1001-6864.2013.09.021
[17] 吴敏,吴政鹏,余日华,等. 洪涝灾害对砌体建筑承载能力的影响研究[J]. 江苏建筑,2016(S1):16-19+32. [WU Min, WU Zhengpeng, YU Rihua, et al. Study on the influence of flood disaster on the bearing capacity of masonry building [J]. Jiangsu Construction, 2016(S1):16-19+32] DOI: 10.3969/j.issn.1005-6270.2016.z1.006
[18] 李卫江,温家洪,吴燕娟. 基于PGIS 的社区洪涝灾害概率风险评估——以福建省泰宁县城区为例[J]. 地理研究,2014,33(1):31-42. [LI Weijiang, WEN Jiahong, WU Yanjuan. PGIS-based probabilistic community flood disaster risk assessment: A case of Taining County town, Fujian province [J]. Geographical Research, 2014, 33(1): 31-42] DOI: 10.11821/dlyj201401004
[19] CIUREAN R L, HUSSIN H, VAN WESTEN C J, et al. Multi-scale debris flow vulnerability assessment and direct loss estimation of buildings in the Eastern Italian Alps [J]. Natural Hazards, 2017, 85(2):929-957. DOI: 10.1007/s11069-016-2612-6
[20] UN/ISDR. Living with risk: A global review of disaster reduction initiatives 2004 version [Z]. United Nations Publication, 2004, 6.
[21] 周成虎,万庆,黄诗峰, 等. 基于GIS 的洪水灾害风险区划研究[J]. 地理学报,2000,55(1):15-24. [ZHOU Chenghu, WAN Qing, HUANG Shifeng, et al. Research on GIS-based flood disaster risk zoning [J]. Acta Geographica Sinica, 2000, 55(1):15-24]
[22] CHAMBERS R. Editorial introduction: Vulnerability, coping and policy [J]. Institute of Development Studies Bulletin, 1989, 20(2):1-7. DOI: 10.1111/j.1759-5436.1989.mp20002001.x
[23] CUTTER S L, BORUFF B J, SHIRLEY W L. Social vulnerability to environmental hazards [J]. Social Science Quarterly, 2003, 84(2): 242-261. DOI: 10.1111/1540-6237.8402002
[24] PAPATHOMA-KÖHLE M, TOTSCHINIG R, KEILER M, et al. A new vulnerability function for debris flow: The importance of physical vulnerability assessment in alpine areas [G]// Proceedings of 12th Congress Interpraevent 2012. Grenoble,2012:1033-1043.
[25] BIRKMANN J, CARDONA O D, CARREÑO M L, et al. Framing vulnerability, risk and societal responses: The MOVE framework [J]. Natural Hazards, 2013,67(2): 193-211. DOI: 10.1007/s11069-013-0558-5
[26] TOTSCHNIG R, SEDLACEK W, FUCHS S. A quantitative vulnerability function for fluvial sediment transport [J]. Natural Hazards, 2011, 58(2):681-703. DOI: 10.1007/s11069-010-9623-5
[27] 吉中会,吴先华. 山洪灾害风险评估的研究进展[J]. 灾害学,2018,33(1):162-167+174. [JI Zhonghui, WU Xianhua. A review about the risk assessment of torrential flood disaster [J]. Journal of Catastrophology, 2018, 33(1):162-167+174] DOI: 10.3969/j.issn.1000-811X.2018.01.029
[28] SHI Peijun, KASPERSON R, WANG Jing'ai, et al. World atlas of natural disaster risk [M]. Berlin Heidelberg: Springer, 2015:309-323. DOI: 10.1007/978-3-662-45430-5_17
[29] SMITH D I. Flood damage estimation: A review of urban stage-damage curves and loss functions [J]. Water South Africa, 1994, 20(3): 231-238. DOI: 10.1029/94WR00710
[30] TSAO T C, HSU W K, CHENG C T, et al. A preliminary study of debris flow risk estimation and management in Taiwan [G] //Proceedings of International Symposium Interpraevent in the Pacific Rim-Taipei. 2010:930-939.
[31] QUAN LUNA B, BLAHUT J, VAN WESTEN C J, et al. The application of numerical debris flow modeling for the generation of physical vulnerability curves [J]. Natural Hazards and Earth System Sciences, 2011, 11(7):2047-2060. DOI: 10.5194/nhess-11-2047-2011
[32] LO W C, TSAO T C, HSU C H. Building vulnerability to debris flows in Taiwan: A preliminary study [J]. Natural Hazards, 2012, 64(3): 2107-2128. DOI: 10.1007/s11069-012-0124-6
[33] 董姝娜,姜鎏鹏,张继权,等. 基于“3S”技术的村镇住宅洪灾脆弱性曲线研究[J]. 灾害学,2012,27(2):34-38+42. [DONG Shuna, JIANG Liupeng, ZHANG Jiquan, et al. Research on flood vulnerability curves of rural dwellings based on” 3S” technology [J]. Journal of Catastrophology, 2012, 27(2):34-38+42]
[34] GODFREY A, CIUREAN R L, VAN WEATEN C J, et al. Assessing vulnerability of buildings to hydro-meteorological hazards using an expert based approach: An application in Nehoiu Valley, Romania [J]. International Journal of Disaster Risk Reduction, 2015, 13:229-241. DOI: 10.1016/j.ijdrr.2015.06.001
[35] KANG H, KIM Y. The physical vulnerability of different types of building structure to debris flow events [J]. Natural Hazards, 2016, 80(3): 1475-1493. DOI: 10.1007/s11069-015-2032-z
[36] ZHANG J, GUO Z X, WANG D, et al. The quantitative estimation of the vulnerability of brick and concrete wall impacted by an experimental boulder [J]. Natural Hazards and Earth System Sciences, 2016, 16(2):299-309. DOI: 10.5194/nhess-16-299-2016
[37] UNDRO. Natural disasters and vulnerability analysis [R]. Department of Humanitarian Affairs/United Nations Disaster Relief Office, Geneva, 1979:53.
[38] 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报,2002,11(3):1-9. [SHI Peijun. Theory on disaster science and disaster dynamics [J]. Journal of Natural Disasters, 2002, 11(3):1-9] DOI: 10.13577/j.jnd.2002.0301
[39] DEGAGNÉ M P J, MACMILLAN D B. Red river basin stage-damage curves update and preparation of flood damage maps [G] // American Society of Civil Engineers, KGS Group. Proceedings of Joint Conference on Water Resources Engineering and Planning & Management, Canada: International Joint Commission Mixte Internationale, 2000:1-15.
[40] HOHL R, SCHIESSER H, ALLER D. Hailfall: The relationship between radar-derived hail kinetic energy and hail damage to buildings [J]. Atmospheric Research, 2002, 63(3-4):177-207. DOI: 10.1016/S0169-8095(02)00059-5
[41] HOHL R, SCHIESSER H, KNEPPER I. The use of weather radars to estimate hail damage to automobiles: An exploratory study in Switzerland [J]. Atmospheric Research, 2002, 61(3):215-238. DOI: 10.1016/S0169-8095(01)00134-X
[42] DUTTA D, HERATH S, MUSIAKE K. A mathematical model for flood loss estimation [J]. Journal of Hydrology, 2003, 277(1-2):24-49. DOI: 10.1016/S0022-1694(03)00084-2
[43] MERZ B, KREIBICH H, THIKKEN A, et al. Estimation uncertainty of direct monetary flood damage to buildings [J]. Natural Hazards and Earth System Sciences, 2004, 4:153-163. DOI: 10.5194/nhess-4-153-2004
[44] DE MOEL H, AERTS J C J H. Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates [J]. Natural Hazards, 2011, 58(1):407-425. DOI: 10.1007/s11069-010-9675-6
[45] PENNING-ROWSELL E C, CHATTERTON J B. The benefits of flood alleviation: A manual of assessment techniques [J]. The Geographical Journal, 1979, 145(3):472-473. DOI: 10.2307/633221
[46] ARRIGHI C, MAZZANTI B, PISTONE F, et al. Empirical flash flood vulnerability functions for residential buildings [J]. SN Applied Sciences, 2020, 2(5):904. DOI: 10.1007/s42452-020-2696-1
[47] HARTFORD D, FELL R. Landslide risk assessment [G]//CRUDEN D and FELL R. Proceedings of the International Workshop on Landslide Risk Assessment, New York: Taylor and Francis Group, 1997:51-110. DOI: 10.1201/9780203749524
[48] PRIETO J A, JOURNEAY M, ACEVEDO A B, et al. Development of structural debris flow fragility curves(debris flow buildings resistance)using momentum flux rate as a hazard parameter [J]. Engineering Geology, 2018, 239(1):144-157. DOI: 10.1016/j.enggeo.2018.03.014
[49] APEL H, ARONICA G T, KREIBICH H, et al. Flood risk analyses—how detailed do we need to be? [J]. Natural Hazards, 2009, 49(1):79-98. DOI:10.1007/s11069-008-9277-8
[50] SARRIS A, LOUPASAKIS C, SOUPIOS P, et al. Earthquake vulnerability and seismic risk assessment of urban areas in high seismic regions: Application to Chania City, Crete Island, Greece [J]. Natural Hazards, 2010, 54(2):395-412. DOI: 10.1007/s11069-009-9475-z
[51] ZHANG S, ZHANG L, LI X, et al. Physical vulnerability models for assessing building damage by debris flows [J]. Engineering Geology, 2018, 247:145-158. DOI: 10.1016/j.enggeo.2018.10.017
[52] ZHOU J, LI S, NIE G, et al. Research on seismic vulnerability of buildings and seismic disaster risk: A case study in Yancheng, China [J]. International Journal of Disaster Risk Reduction, 2020, 45(3):101477. DOI: 10.1016/j.ijdrr.2020.101477
[53] LUO H Y, FAN R L, WANG H J, et al. Physics of building vulnerability to debris flows, floods and earth flows [J]. Engineering Geology, 2020, 271(12):105611. DOI: 10.1016/j.enggeo.2020.105611
[54] JALAYER F, ARONICA G T, RECUPERO A, et al. Debris flow damage incurred to buildings: An in situ back analysis [J]. Journal of Flood Risk Management, 2016, 11(2): 646-662. DOI: 10.1111/jfr3.12238

相似文献/References:

[1]曾扬,肖坤桃,陈文平.湖南省山洪灾害及防治对策[J].山地学报,2004,(03):337.
[2]熊俊楠,曹依帆,程维明*,等.福建省山洪灾害危险性评价[J].山地学报,2019,(04):538.[doi:10.16089/j.cnki.1008-2786.000446]
 XIONG Junnan,CAO Yifan,CHENG Weiming*,et al.Risk Assessment of Mountain Torrent Disasters in Fujian Province, China[J].Mountain Research,2019,(3):538.[doi:10.16089/j.cnki.1008-2786.000446]

备注/Memo

备注/Memo:
收稿日期(Received date):2020-09-01; 改回日期(Accepted date):2021-05-26
基金项目(Foundation item):国家重点研发计划支持项目(2017YFC1502505)。[National Key Research and Development Program of China(2017YFC1502505)]
作者简介(Biography):张馨仁(1997-),女,甘肃张掖人,博士研究生,主要研究方向:山洪灾害风险评估。[ZHANG Xinren(1997-),female,born in Zhangye,Gansu province,Ph.D. candidate,research on flash flood disaster risk assessment] E-mail:zxr@mail.bnu.edu. cn
*通讯作者(Corresponding author):王瑛(1974-),女,博士,教授,主要研究方向:自然灾害风险评估。[WANG Ying(1974-),female,Ph.D.,professor,research on natural disaster risk assessment] E-mail:wy@bnu. edu. cn
更新日期/Last Update: 2021-05-30