[1]何坤龙,刘晓辉,刘 蛟*,等.不同偏差校正方法对青藏高原地区GPM的应用效果研究[J].山地学报,2021,(3):439-449.[doi:10.16089/j.cnki.1008-2786.000609]
 HE Kunlong,LIU Xiaohui,LIU Jiao*,et al.Performances of Different Deviation Calibration Methods on GPM in the Qinghai-Tibet Plateau, China[J].Mountain Research,2021,(3):439-449.[doi:10.16089/j.cnki.1008-2786.000609]
点击复制

不同偏差校正方法对青藏高原地区GPM的应用效果研究()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第3期
页码:
439-449
栏目:
山地技术
出版日期:
2021-05-25

文章信息/Info

Title:
Performances of Different Deviation Calibration Methods on GPM in the Qinghai-Tibet Plateau, China
文章编号:
1008-2786-(2021)3-439-11
作者:
何坤龙1 刘晓辉1 刘 蛟23* 张越关1
1.西华大学 能源与动力工程学院, 成都 610039; 2.西南科技大学 环境与资源学院,四川 绵阳621010; 3.国家遥感中心绵阳科技城分部,四川 绵阳621010
Author(s):
HE Kunlong1 LIU Xiaohui1 LIU Jiao23* ZHANG Yueguan1
1. School of Energy and Power Engineering, Xihua University, Chengdu 610039, China; 2.School of Environment and Resources, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China; 3.Mianyang S&T City Division, National Remote Sensing Center of China, Mianyang 621010, Sichuan, China
关键词:
卫星遥感降水 偏差校正 GPM 精度评估 青藏高原
Keywords:
satellite remote sensing precipitation deviation correction GPM accuracy assessment the Qinghai-Tibet Plateau
分类号:
TP79
DOI:
10.16089/j.cnki.1008-2786.000609
文献标志码:
A
摘要:
新一代卫星降水产品GPM在全球降雨观测精度上较TRMM有大幅提升,但在青藏高原地区的精度仍然不理想,而目前遥感降水数据校正缺乏对数据中降水量、雨天频率以及概率分布多重属性的综合考虑。本文根据19个典型站点2014—2017年的日降水数据,在分析GPM降水探测精度的基础上,采用线性缩放法(LS)、局部强度缩放法(LOCI)、Gamma分布映射法以及Gamma和LOCI结合的方法(Gamma-LOCI)对青藏高原GPM数据进行了偏差校正。结果表明:(1)GPM对青藏高原日降水事件探测能力总体上表现出从年降水量较少的西北部洪积平原区以及中部腹地向年降水更丰富的东部山地区和平原区转好的趋势,从日降水强度来看,存在对小雨事件(<2 mm)高估和对大雨事件(>10 mm)低估的现象;(2)经四种方法校正后,GPM与站点观测数据在各百分位点上的整体偏差均有不同程度的降低,Gamma分布映射对降水时间序列的概率分布进行调整,修正了降水量并保留了极值,使其在降水偏丰区域的应用效果优于LS和LOCI; 和LOCI结合后同时对降水数据中雨量、雨天频率和时间概率分布校正,其应用效果进一步改善了GPM日降水过程的精度,提高了与站点日降水序列的拟合度和匹配度。研究结果为GPM在青藏高原地区的准确应用提供参考的校正方法,为区域水文模拟、水资源管理研究奠定基础条件。
Abstract:
Although a new generation of satellite precipitation product, Global Precipitation Measurement(GPM)can improve the accuracy of global precipitation observation data as compared with the previous Tropical Rainfall Measuring Mission(TRMM), its accuracy is still not high enough when applying it to the Qinghai-Tibet Plateau, China. Due to unique local climate and precipitous relief in the Qinghai-Tibet Plateau, precipitations collected at sparse rainfall gauges exhibited strong space-time heterogeneity, making some available approaches of precipitation calibration for GPM lacked of an integrated consideration of multiple attributes of rainfall volumes, rainfall frequency in rainy days and relevant probability distribution. In this study, GPM data for 2014-2017 was calibrated by observed precipitation collected at 19 meteorological stations in Tibet on a daily basis. Linear Scaling(LS), local Intensity(LOCI), Gamma Distribution Mapping(GDM)and GDM-LOCI methods were used to eliminate the deviation between GPM and the ground observations. The results show that:(1)Overall, the performance of GPM to detect daily precipitation over the Qinghai-Tibet Plateau described an increasing trend in space, rising gradually from low annual precipitation in the northwest pluvial plain and the central hinterland to rich annual precipitation in the eastern intermountainous plain. Unfortunately, light rain event(<2 mm)was overestimated but heavy rain event(>10 mm)was underestimated in terms of daily precipitation intensity.(2)After calibration by aforesaid four methods, the overall deviation between GPM and site observations were reduced to some extent at each percentile. The probability distribution of precipitation time series was optimized by GDM, and it calibrated precipitation values and retained extreme value by properly adjusting the probability distribution of GPM, making its application effect better than those of LS and LOCI in the area with more abundant precipitation. After combining with LOCI, GDM calibrated the precipitation, frequency of rainy day and time probability distribution of rainfall in GPM, and its application effect further improved the accuracy of GPM, and improved the fitting degree and matching degree to the daily precipitation series provided by ground stations. GDM-LOCI was the best suitable method to calibrate GPM after compared with any other single method. This research provides a reference calibration method for an accurate application of GPM in the Qinghai-Tibet Plateau, and lays a basic condition for regional hydrological simulation and water resources management research.

参考文献/References:

[1] SHI H Y, LI T J, WEI J H. Evaluation of the gridded CRU TS precipitation dataset with the point raingauge records over the Three-River Headwaters Region [J]. Journal of Hydrology, 2017, 548(5): 322-332. DOI: 10.1016/j.jhydrol.2017.03.017
[2] CHAPPELL A, RENZULLO L J, RAUPACH T H, et al. Evaluating geostatistical methods of blending satellite and gauge data to estimate near real-time daily rainfall for Australia [J]. Journal of Hydrology, 2013, 493(7): 105-114. DOI: 10.1016/j.jhydrol.2013.04.024
[3] GUO H, CHEN S, BAO A M, et al. Early assessment of integrated multi-satellite retrievals for global precipitation measurement over China [J]. Atmospheric Research, 2016,176-177:121-133. DOI: 10.1016/j.atmosres.2016.02.020
[4] SUN R C, YUAN H L, LIU X L, et al. Evaluation of the latest satellite-gauge precipitation products and their hydrologic applications over the Huaihe River basin [J]. Journal of Hydrology, 2016, 536(3): 302-319. DOI: 10.1016/j.jhydrol.2016.02.054
[5] HONG Y, ADLER R F, HUFFMAN G J, et al. Applications of TRMM-based multi-satellite precipitation estimation for global runoff prediction: Prototyping a global flood modeling system [G]//GEBREMICHAEL M, HOSSAIN F. Satellite rainfall applications for surface hydrology. Berlin: Springer, 2010: 245-265. DOI: 10.1007/978-90-481-2915-7_15
[6] GAO Z, LONG D, TANG G Q, et al. Assessing the potential of satellite-based precipitation estimates for flood frequency analysis in ungauged or poorly gauged tributaries of China's Yangtze River basin [J]. Journal of Hydrology, 2017, 550(5): 478-496. DOI: 10.1016/j.jhydrol.2017.05.025
[7] 曾红伟,李丽娟. 澜沧江及周边流域TRMM3B43数据精度检验 [J]. 地理学报,2011,66(7):994-1004. [ZENG Hongwei, LI Lijuan. Accuracy validation of TRMM 3B43 data in Lancang River Basin [J]. Acta Geographica Sinica, 2011, 66(7): 994-1004]
[8] 嵇涛,杨华,刘睿,等. TRMM卫星降水数据在川渝地区的适用性分析 [J]. 地理科学进展, 2014, 33(10): 1375-1386. [JI Tao, YANG Hua, LIU Rui, et al. Applicability analysis of the TRMM precipitation data in the Sichuan-Chongqing region [J]. Progress in Geography, 2014, 33(10): 1375-1386] DOI: 10.11820/dlkxjz.2014.10.009
[9] 金晓龙,邵华,张弛,等. GPM卫星降水数据在天山山区的适用性分析 [J]. 自然资源学报, 2016, 31(12):2074-2085. [JIN Xiaolong, SHAO Hua, ZHANG Chi, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016, 31(12): 2074-2085] DOI: 10.11849/zrzyxb.20160057
[10] 李豪,陈厚霖,程雯颖,等.兼顾多要素空间非平稳性特征的卫星降水数据精度提升方法 [J]. 地理与地理信息科学,2020,36(5):29-38. [LI Hao, CHEN Houling, CHEN Wenying, et al. Improvement of the accuracy of satellite-derived precipitation data by considering the spatial non-stationarity of multifactor: A case study of Sichuan province [J]. Geography and Geo-Information Science, 2020, 36(5): 29-38] DOI: 10.3969/j.issn.1672-0504.2020.05.005
[11] 孙乐强,郝振纯,王加虎,等. TMPA卫星降水数据的评估与校正[J]. 水利学报, 2014,46(10):1135-1146. [ SUN Leqiang, HAO Zhenchun, WANG Jiahu, et al. Assessment and correction of TMPA products 3B42RT and 3B42V6 [J]. Journal of Hydraulic Engineering, 2014, 46(10): 1135-1146] DOI: 10.13243/j.cnki.slxb.2014.10.001
[12] 曲伟,路京选,宋文龙,等. TRMM遥感降水数据在伊洛瓦底江流域的精度检验和校正方法研究[J]. 地球科学进展, 2014, 29(11):1262-1270. [QU Wei, LU Jingxuan, SONG Wenlong, et al. Research on accuracy validation and calibration methods of TRMM remote sensing precipitation data in Irrawaddy Basin [J]. Advances in Earth Science, 2014, 29(11): 1262-1270] DOI: 10.11867/j.issn.1001-8166.2014.11.1262
[13] BIAN Q, XU Z, ZHAO L, et al. Evaluation and intercomparison of multiple snow water equivalent products over the Tibetan Plateau [J]. Journal of Hydrometeorology, 2019, 20(10): 2043-2055. DOI: 10.1175/JHM-D-19-0011.1
[14] 张秀红,张文江,蒋蕙如. 基于水量平衡的青藏高原东南部卫星降水产品质量评估与校正[J]. 地理与地理信息科学, 2018, 34(6):34-41. [ZHANG Xiuhong, ZHANG Wenjiang, JIANG Huiru. Evaluation and correction of satellite precipitation products in the southeastern Tibetan Plateau based on basin water balance [J]. Geography and Geo-Information Science, 2018, 34(6): 34-41] DOI: 10.3969/j.issn.1672-0504.2018.06.006
[15] 唐国强,万玮,曾子悦,等. 全球降水测量(GPM)计划及其最新进展综述 [J]. 遥感技术与应用,2015,30(4):607-615. [TANG Guoqiang, WAN Wei, ZENG Ziyue, et al. An overview of the Global Precipitation Measurement(GPM)mission and it's latest development [J]. Remote Sensing Technology and Application, 2015, 30(4): 607-615] DOI: 10.11873/j.issn.1004-0323.2015.4.0607
[16] 胡实,韩建,占车生,等. 太行山区遥感卫星反演降雨产品降尺度研究 [J]. 地理研究,2020, 39(7):1680-1690. [HU Shi, HAN Jian, ZHAN Chesheng, et al. Spatial downscaling of remotely sensed precipitation in Taihang Mountains [J]. Geographical Research, 2020, 39(7): 1680-1690] DOI: 10.11821/dlyj020190545
[17] 董国涛,樊东,杨胜天,等. GPM与TRMM降雨数据在黄河流域适用性分析 [J]. 水土保持研究,2018, 25(3): 81-87. [DONG Guotao, FAN Dong, YANG Shengtian, et al. Analysis on the applicability of GPM and TRMM precipitation data in the Yellow River Basin [J]. Research of Soil and Water Conservation, 2018, 25(3): 81-87] DOI: 10.13869/j.cnki.rswc.2018.03.013
[18] 李麒崙,张万昌,易路,等. GPM与TRMM降水数据在中国大陆的精度评估与对比 [J]. 水科学进展,2018, 29(3): 303-313. [LI Qilun, ZHANG Wanchang, YI Lu, et al. Accuracy evaluation and comparison of GPM and TRMM precipitation product over Mainland China [J]. Advances in Water Science, 2018, 29(3): 303-313] DOI: 10.14042/j.cnki.32.1309.2018.03.001
[19] 魏志明,岳官印,李家,等. GPM与TRMM降水数据在海河流域的精度对比研究 [J]. 水土保持通报,2017,37(2):171-176. [WEI Zhiming, YUE Guanyin, LI Jia, et al. Comparision study on accuracies of precipitation data using GPM and TRMM product in Haihe River Basin [J]. Bulletin of Soil and Water Conservation, 2017, 37(2): 171-176] DOI: 10.13961/j.cnki.stbctb.2017.02.026
[20] MA Y Z, TANG G Q, LONG D, et al. Similarity and error intercomparison of the GPM and its predecessor-TRMM multisatellite precipitation analysis using the best available hourly gauge network over the Tibetan Plateau [J]. Remote Sensing, 2016, 8(7): 569-586. DOI:10.3390/rs8070569
[21] 余坤伦,张寅生,马宁,等. GPM和TRMM遥感降水产品在青藏高原中部的适用性评估 [J]. 干旱区研究,2018,35(6):1373-1381. [YU Kunlun, ZHANG Yinsheng, MA Ning, et al. Applicability of GPM and TRMM remote sensing precipitation products in the central Tibet Plateau [J]. Arid Zone Research, 2018, 35(6): 1373-1381] DOI:10.13866/j.azr.2018.06.14
[22] CHEN F R, LI X. Evaluation of IMERG and TRMM 3B43 monthly precipitation products over Mainland China [J]. Remote Sensing, 2016, 8(6): 472. DOI: 10.3390/rs8060472
[23] 石玉立,宋蕾. 1998-2012年青藏高原TRMM 3B43降水数据的校准 [J]. 干旱区地理, 2015, 38(5):900-911. [SHI Yuli, SONG Lei. Calibration of TRMM 3B43 over Tibetan Plateau during 1998-2012 [J]. Arid Land Geography, 2015, 38(5): 900-911] DOI: 10.13826/j.cnki.cn65-1103/x.2015.05.004
[24] 马伟东,刘峰贵,周强,等. 1961—2017年青藏高原极端降水特征分析 [J]. 自然资源学报,2020,35(12):3039-3050. [MA Weidong, LIU Fenggui, ZHOU Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017 [J]. Journal of Natural Resources, 2020, 35(12): 3039-3050] DOI: 10.31497/zrzyxb.20201218
[25] LENDERINK G, BUISHAND A, VAN DEURSEN W. Estimates of future discharges of the river Rhine using two scenario methodologies: Direct versus delta approach [J]. Hydrology and Earth System Sciences, 2007, 11(3): 1145-1159. DOI: 10.5194/hess-11-1145-2007
[26] SCHMIDLI J, FREI C, VIDALE P L. Downscaling from GCM precipitation: A benchmark for dynamical and statistical downscaling methods [J]. International Journal of Climatology, 2006, 26(4): 679-689. DOI: 10.1002/joc.1287
[27] FANG G H, YANG J, CHEN Y N, et al. Comparing bias correction methods in downscaling meteorological variables for a hydrologic impact study in an arid area in China [J]. Hydrology and Earth System Sciences, 2015, 19(6): 2547-2559. DOI: 10.5194/hess-19-2547-2015
[28] 高超,文化,宣伟栋,等. 基于分段三伽玛分布的降雨偏差纠正方法 [J]. 水科学进展, 2018, 29(2):169-178. [GAO Chao, WEN Hua, XUAN Weidong, et al. A separated three-gamma bias correction method for precipitation [J]. Advances in Water Science, 2018, 29(2): 169-178] DOI: 10.14042/j.cnki.32.1309.2018.02.003
[29] 田霖,孟凡浩,刘铁,等.干旱典型山区CFSR降水数据的偏差校正方法研究——以新疆开孔河流域为例 [J].干旱气象,2017,35(2):313-320.[TIAN Lin,MENG Fanhao,LIU Tie,et al.Comparison of bias-correction methods for CFSR reanalysis precipitation data in typical arid mountainous regions: A case study in Kaikong River Basin [J].Journal of Arid Meteorology, 2017, 35(2): 313-320]DOI: 10.11755/j.issn.1006-7639(2017)-02-0313
[30] XU R, Tian F Q, YANG L, et al. Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern Tibetan Plateau based on a high-density rain gaugenetwork [J]. Journal of Geophysical Research: Atmospheres, 2017, 122(15): 910-924. DOI:10.1002/2016JD025418

备注/Memo

备注/Memo:
收稿日期(Received date):2020-12-08; 改回日期(Accepted date): 2021-05-28
基金项目(Foundation item):西华大学重点科研基金(Z17110); 西华大学研究生创新基金(ycjj2020109)。[Key Scientific Research Fund Of Xihua University(Z17110); Xihua University Graduate Student Innovation Fund(ycjj2020109)]
第一作者(Biography):何坤龙(1995-),男,四川巴中人,硕士研究生,主要研究方向:遥感水文水资源学。[HE Kunlong(1995-), male, born in Bazhong, Sichuan province, M.Sc. candidate, research on remote sensing hydrology and water resources] E-mail:m18833028159@163.com
*通讯作者(Corresponding author):刘蛟(1986-),男,博士,讲师,主要研究方向:遥感水文学。[LIU Jiao(1986-), male, Ph.D., lecturer, specialized in remote sensing hydrology] E-mail: liujiao1102@aliyun.com
更新日期/Last Update: 2021-05-30