参考文献/References:
[1] OERLEMANS J. Quantifying global warming from the retreat of glaciers [J]. Science, 1994, 264(5156): 243-245. DOI: 10.1126/science.264.5156.243
[2] YAO Tandong, WANG Youqing, LIU Shiying, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China [J]. Science in China Series D Earth Sciences, 2004, 47(12): 1065-1075. DOI: 10.1360/03yd0256
[3] PFEFFER W T, ARENDT A A, BLISS A, et al. The Randolph Glacier inventory: A globally complete inventory of glaciers [J]. Journal of Glaciology, 2014, 60(221): 537-552. DOI: 10.3189/2014JoG13J176
[4] 蒲健辰,姚檀栋,王宁练,等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土,2004,26(5): 517-522. [PU Jianchen, YAO Tandong, WANG Ninglian, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century [J]. Journal of Glaciology and Geocryology, 2004, 26(5): 517-522] DOI: 10.1007/BF02873097
[5] 鲁安新,姚檀栋,王丽红,等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土,2005,27(6): 783-792. [LU Anxin, YAO Tandong, WANG Lihong, et al. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing [J]. Journal of Glaciology and Geocryology, 2005, 27(6): 783-792] DOI: 10.7522/J.issn.1000-0240(2005)06-0783-10
[6] 秦大河,丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展,2009,5(4): 187-195. [QIN Dahe, DING Yongjian. Cryospheric changes and their impacts: Present, trends and key issues [J]. Advances in Climate Change Research, 2009, 5(4): 187-195] DOI: 10.1016/S1003-6326(09)60084-4
[7] OPPENHEIMER M, GLAVOVIC B C, HINKEL J, et al. Sea level rise and implications for low lying islands, coasts and communities [EB/OL]. // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate(2021-11-25)[2021-11-25]. https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/
[8] 王宁练,姚檀栋,徐柏青,等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊,2019,34(11): 1220-1232. [WANG Ninglian, YAO Tandong, XU Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232] DOI: 10.16418/j.issn.1000-3045.2019.11.005
[9] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663-667. DOI: 10.1038/NCLIMATE1580
[10] 杨威,姚檀栋,徐柏青,等. 青藏高原东南部岗日嘎布地区冰川严重损耗与消融[J]. 科学通报,2008,53(17): 2091-2095. [YANG Wei, YAO Tandong, XU Baiqing, et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau [J]. Chinese Science Bulletin, 2008, 53(17): 2091-2095] DOI: 10.1007/s11434-008-0288-3
[11] 姚檀栋,秦大河,沈永平,等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志,2013,35(3): 179-186. [YAO Tandong, QIN Dahe, SHEN Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau [J]. Chinese Journal of Nature, 2013, 35(3): 179-186] DOI: 10.3969/j.issn.0253-9608.2013.03.004
[12] 陈发虎,傅伯杰,夏军,等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学,2019,49(11): 1659-1696. [CHEN Fahu, FU Bojie, XIA Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects [J]. Scientia Sinica Terrae, 2019, 49(11): 1659-1696] DOI: 10.1360/SSTe-2019-0174
[13] KE Linghong, SONG Chunqiao, YONG Bin, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau [J]. Remote Sensing of Environment, 2020, 242: 111777. DOI: 10.1016/j.rse.2020.111777
[14] 邬光剑,姚檀栋,王伟财,等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊,2019,34(11): 1285-1292. [WU Guangjian, YAO Tandong, WANG Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292] DOI: 10.16418/j.issn.1000-3045.2019.11.011
[15] 叶庆华,程维明,赵永利,等. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报,2016,18(7): 920-930. [YE Qinghua, CHENG Weiming, ZHAO Yongli, et al. A Review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies [J]. Journal of Geo-Information Science, 2016,18(7): 920-930] DOI: 10.3724/SP.J.1047.2016.00920
[16] ROUND V, LEINSS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram [J]. The Cryosphere, 2017, 11(2):723-739. DOI: 10.5194/tc-11-723-2017
[17] LIU Guang, FAN Jinghui, ZHAO Feng, et al. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry [J]. Journal of Mountain Science, 2017, 14(5): 859-869. DOI: 10.1007/s11629-016-3992-5
[18] 吴坤鹏,刘时银,蒋宗立, 等. 1980—2014年岗日嘎布地区冰川高程变化数据集[J]. 中国科学数据,2018,3(4): 93-104. [WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. A dataset of glacier elevation changes in the Kangri Karpo Mountains during 1980-2014 [J]. China Science Data, 2018, 3(4): 93-104] DOI: 10.11922/sciencedb.574
[19] 张其兵,康世昌,王晶. 2000—2014年祁连山西段老虎沟12号冰川高程变化[J]. 冰川冻土,2017,39(4): 733-740.[ZHANG Qibing, KANG Shichang, WANG Jing. Elevation change of the Laohugou Glacier No.12 in the weastern Qilian Mountain from 2000 to 2014 [J]. Journal of Glaciology and Geocryology, 2017,39(4): 733-740] DOI: 10.7522/j.issn.1000-0240.2017.0083
[20] LI Gang, LIN Hui. Recent decadal glacier mass balances over the western Nyaingentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry [J]. Global and Planetary Change, 2017, 149: 177-190. DOI: 10.1016/j.gloplacha.2016.12.018
[21] LIU Lin, JIANG Liming, JIANG Houjun, et al. Accelerated glacier mass loss(2011-2016)over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements [J]. Remote Sensing of Environment, 2019, 231: 111241. DOI: 10.1016/j.rse.2019.111241
[22] WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data [J]. Journal of Glaciology, 2019, 65(251): 422-439. DOI: 10.1017/jog.2019.20
[23] LI Gang, LIN Hui, YE Qinghua. Heterogeneous decadal glacier downwasting at the Mt. Everest(Qomolangma)from 2000 to 2012 based on multi-baseline bistatic SAR interferometry [J]. Remote Sensing of Environment, 2018, 206: 336-349. DOI: 10.1016/j.rse.2017.12.032
[24] SUN Yafei, JIANG Liming, LIU Lin, et al. Mapping glacier elevations and their changes in the western Qilian Mountains, northern Tibetan Plateau, by bistatic InSAR [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 68-78. DOI: 10.1109/JSTARS.2017.2764751
[25] REN Shaoting, MENENTI M, LI Jia, et al. Glacier mass balance in the Nyainqentanglha mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM [J]. Remote Sensing, 2020, 12(5): 864. DOI: 10.3390/rs12050864
[26] 张鑫,周建民,刘志平. 基于KH-9数据对青藏高原山地冰川DEM提取及精度评价——以普若岗日冰川和雅弄冰川为例[J]. 冰川冻土,2019,41(1): 27-35. [ZHANG Xin, ZHOU Jianmin, LIU Zhiping. DEM extraction and precision evaluation of mountain glaciers in the Qianghai-Tibet Plateau based on KH-9 data: Take the Purog Kangri glacier and Jiong glacier as example [J].Journal of Glaciology and Geocryology, 2019, 41(1): 27-35] DOI: 10.7522/j.issn.1000-0240.2019.0005
[27] ZHOU Yushan, LI Zhiwei, LI Jia, et al. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs [J]. Remote Sensing of Environment, 2018, 210: 96-112. DOI: 10.1016/j.rse.2018.03.020
[28] 宗继彪,叶庆华,田立德. 基于ICESat/GLAS, SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000—2010年)[J]. 科学通报,2014,59(21): 2108-2118. [ZONG Jibiao, YE Qinghua, TIAN Lide. Recent Naimona'Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements [J]. Chinese Science Bulletin, 2014, 59(21): 2108-2118] DOI: 10.1360/972013-1243
[29] 程澍,熊章强,李新武, 等. 基于CryoSat-2数据的纳木那尼冰川冰面高程变化方法研究[J]. 测绘与空间地理信息,2018,41(1): 189-192. [CHENG Shu, XIONG Zhangqiang, LI Xinwu, et al. Naimona' Nyi Glacier elevation changes from 2010 to 2016 using Cryosat-2 satellite data [J]. Geomatics and Spatial Information Technology, 2018,41(1): 189-192] DOI: 10.3969/j.issn.1672-5867.2018.01.052
[30] 孙亚飞,江利明,柳林,等. TanDEM-X双站InSAR地形提取及精度评估[J]. 武汉大学学报(信息科学版),2016,41(1): 100-105. [SUN Yafei, JIANG Liming, LIU Lin, et al. Generating and evaluating digital terrain model with TanDEM-X bistatic SAR interferometry [J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 100-105] DOI: 10.13203/j.whugis20130618
[31] ZHANG Zhen, LIU Shiyin, JIANG Zongli, et al. Glacier variations at Xinqingfeng and Malan ice caps in the inner Tibetan Plateau since 1970 [J]. Remote Sensing, 2020, 12(3): 421. DOI: 10.3390/rs12030421
[32] CAO Bo, GUAN Weijin, LI Kaiji, et al. Area and mass changes of glaciers in the west Kunlun mountains based on the analysis of multi-temporal remote sensing images and DEMs from 1970 to 2018 [J]. Remote Sensing, 2020, 12(16): 2632. DOI: 10.3390/rs12162632
[33] ZHOU Yushan, HU Jun, LI Zhiwei, et al. Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000-2015 from multi-source remote sensing data [J]. Journal of Hydrology, 2019, 570: 38-50. DOI: 10.1016/j.jhydrol.2019.01.007
[34] VIJAY S, BRAUN M. Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers(Karakoram-Himalaya)[J]. Global and Planetary Change, 2018, 165: 137-146. DOI: 10.1016/j.gloplacha.2018.03.014
[35] RANKL M, BRAUN M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models [J]. Annals of Glaciology, 2016, 57(71): 273-281. DOI: 10.3189/2016AoG71A024
[36] LIU Lin, JIANG Liming, ZHANG Zhimin, et al. Recent accelerating glacier mass loss of the Geladandong Mountain, inner Tibetan Plateau, estimated from ZiYuan-3 and TanDEM-X measurements [J]. Remote Sensing, 2020, 12(3): 472. DOI: 10.3390/rs12030472
[37] LIU Lin, JIANG Liming, SUN Yafei, et al. Morphometric controls on glacier mass balance of the Puruogangri ice field, central Tibetan Plateau [J]. Water, 2016, 8(11): 496. DOI: 10.3390/w8110496
[38] WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories [J]. The Cryosphere, 2018, 12(1): 103-121. DOI: 10.5194/tc-12-103-2018
[39] 吴坤鹏,刘时银,鲍伟佳,等. 1980—2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测[J]. 冰川冻土,2017,39(1): 24-34. [WU Kunpeng, LIU Shiyin, BAO Weijia, et al. Remote sensing monitoring of the glacier change in the Gangrigabu Range, southeast Tibetan Plateau from 1980 through 2015 [J]. Journal of Glaciology and Geocryology, 2017, 39(1): 24-34] DOI: 10.7522/j.issn.1000-0240.2017.0004
[40] 李霞,杨太保,冀琴. 岗日嘎布地区冰川变化特征研究[J]. 水土保持研究,2014,21(4):233-237. [LI Xia, YANG Taibao, JI Qin. Study on glacier variations in the Gangrigabu Range [J]. Research of Soil and Water Conservation, 2014, 21(4): 233-237] DOI: 10.13869/j.cnki.rswc.2014.04.046
[41] 刘时银,上官冬辉,丁永建,等. 20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J]. 冰川冻土,2005,27(1): 55-63. [LIU Shiyin, SHANGGUAN Donghui, DING Yongjian, et al. Glacier variations since the early 20th century in the Gangrigabu Range, southeast Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2005, 27(1): 55-63] DOI: 10.3969/j.issn.1000-0240.2005.01.008
[42] 刘时银,姚晓军,郭万钦,等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报,2015,70(1): 3-16. [LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory [J]. Acta Geographica Sinica, 2015, 70(1): 3-16] DOI: 10.11821/dlxb201501001
[43] YE Qinghua, ZONG Jibiao, TIAN Lide, et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13 [J]. Journal of Glaciology, 2017, 63(238): 273-287. DOI: 10.1017/jog.2016.137
[44] CHEN Yingying, YANG Kun, HE Jie, et al. Improving land surface temperature modeling for dry land of China [J]. Journal of Geophysical Research, 2011, 116:D20104. DOI: 10.1029/2011JD015921
[45] NUTH C, KAAB A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change [J]. The Cryosphere, 2011, 5(1): 271-290. DOI: 10.5194/tc-5-271-2011
[46] HUSS M. Density assumptions for converting geodetic glacier volume change to mass change [J]. The Cryosphere, 2013, 7(3): 877-887. DOI: 10.5194/tc-7-877-2013
[47] KAAB A, TREICHLER D, NUTH C, et al. Brief communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya [J]. The Cryosphere, 2015, 9(2): 557-564. DOI: 10.5194/tc-9-557-2015
[48] SHEAN D E, BHUSHAN S, MONTESANO P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance [J]. Frontiers in Earth Science, 2020(7): 363. DOI: 10.3389/feart.2019.00363
[49] 李成秀,杨太保,田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报,2015,33(2): 157-165. [LI Chengxiu, YANG Taibao, TIAN Hongzhen. Variation of western Kunlun mountain glaciers monitored by remote sensing during 1976-2010 [J]. Mountain Research, 2015, 33(2): 157-165] DOI: 10.16089/j.cnki.1008-2786.000021
[50] 张威,王宁练,李想,等. 近20a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J]. 山地学报, 2019,37(3): 347-358. [ZHANG Wei, WANG Ninglian, LI Xiang, et al. Glacier changes and its response to climate change in the Gilgit River basin, western Karakorum Mountains over the past 20 years [J]. Mountain Research, 2019, 37(3): 347-358] DOI: 10.16089/j.cnki.1008-2786.000428
[51] 刘巧,张勇. 贡嘎山海洋型冰川监测与研究:历史,现状与展望[J]. 山地学报,2017,35(5): 717-726. [LIU Qiao, ZHANG Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt.Gongga: A review [J]. Mountain Research, 2017, 35(5): 717-726] DOI: 10.16089/j.cnki.1008-2786.000271
[52] 张勇,刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报,2017,72(9): 1606-1620. [ZHANG Yong, LIU Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China [J]. Acta Geographica Sinica, 2017, 72(9): 1606-1620] DOI: 10.11821/dlxb201709006