[1]姬鑫慧,叶庆华*,聂 维,等.基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000—2014)[J].山地学报,2021,(5):631-645.[doi:10.16089/j.cnki.1008-2786.000626)]
 JI Xinhui,YE Qinghua*,NIE Wei,et al.Glacier Surface Elevation Change in Southeastern Mt. Kangri Karpo on Tibet during 2000—2014 Based on TerraSAR/TanDEM-X Data[J].Mountain Research,2021,(5):631-645.[doi:10.16089/j.cnki.1008-2786.000626)]
点击复制

基于TerraSAR/TanDEM-X监测岗日嘎布山脉东南段冰川冰面高程变化(2000—2014)()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
631-645
栏目:
山地环境
出版日期:
2021-09-25

文章信息/Info

Title:
Glacier Surface Elevation Change in Southeastern Mt. Kangri Karpo on Tibet during 2000—2014 Based on TerraSAR/TanDEM-X Data
文章编号:
1008-2786-(2021)5-631-15
作者:
姬鑫慧12叶庆华1*聂 维3陈益民1NAUMAN Ali1
1.中国科学院青藏高原研究所 青藏高原地球系统科学国家重点实验室,北京 100101; 2.中国科学院资源与环境学院,北京 100049; 3.南湖实验室 大数据技术研究中心,浙江 嘉兴 314000
Author(s):
JI Xinhui12YE Qinghua1*NIE Wei3CHEN Yimin1NAUMAN Ali1
1. State Key Laboratory of Tibetan Plateau Earth System Science(LATPES), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101,China; 2. College of Resources and Environment, Chinese Academy of Sciences, Beijing 100049,China; 3. Research Center of Big Data Technology, Nanhu Laboratory, Jiaxing 314000, Zhejiang, China
关键词:
冰川变化 TerraSAR/TanDEM-X 雷达差分干涉测量(D-InSAR) 气候响应 岗日嘎布山 青藏高原
Keywords:
glacier change TerraSAR/TanDEM-X Differential Intereferometric Synthetic Aperture Radar(D-InSAR) climate change Mt. Kangri Karpo the Qinghai-Tibet Plateau
分类号:
P343.6
DOI:
10.16089/j.cnki.1008-2786.000626)
文献标志码:
A
摘要:
岗日嘎布山区是海洋型山地冰川集中发育地区之一。海洋型冰川对气候变化敏感,藏东南多云雨天气使可用光学遥感影像数据少,限制了该地冰川变化遥感监测研究,雷达数据的应用为解决这一问题提供了有效途径。基于2000年SRTM DEM与2014年TerraSAR/TanDEM-X雷达数据,采用差分干涉测量(D-InSAR)方法,研究岗日嘎布山区东南段冰面高程变化及冰储量变化特征,得出如下结论:(1)研究区2000—2014年冰储量变化为-1.69±0.12 Gt,冰面高程年均变化为-0.86±0.13 m·a-1。(2)冰面高程变化整体与海拔高度呈正相关(皮尔森系数为0.93)。在3700~3900 m,随海拔升高冰面高程变化加剧; 在3900—5800 m,冰面高程变化逐渐趋于零; 在5800 m以上高海拔积累区,冰面高程变化为正值。(3)表碛覆盖冰川消融较快。表碛覆盖冰川区冰面高程变化为-1.71 m·a-1,裸冰区为-0.73 m·a-1。(4)结合波密、察隅和左贡站年均温与年降水变化可知,2000—2014年研究区年均温显著升高,年降水变化不明显,冰川快速消融是区域气温升高所致。本文可为青藏高原冰川时空变化研究提供基础数据支持。
Abstract:
Glaciers in Mt. Kangri Karpo of southeastern Qinghai-Tibet Plateau are marine glaciers, which are more sensitive to global climate change than continental ones. It is of great significant to investigate glacier coverage changes at Mt. Kangri Karpo for a better knowledge of climate change effects. Unfortunately, the frequent cloudy weather at Mt. Kangri Karpo limits the quality of optical images, which has become a bottleneck for glacier studies in the area. Differential Interferometric Synthetic Aperture Radar(D-InSAR), provides a more accurate way to study glacier elevation changes. Based on TerraSAR / TanDEM-X data in 2014 and SRTM DEM in 2000, this research studied geodetic glacier surface elevation change and geodetic glacier mass balance changes in the southeast of Mt. Kangri Karpo. The results showed that:(1)During 2000—2014, the glacier geodetic mass change was -1.69±0.12 Gt, i.e. the averaged glacier surface elevation change was -0.86±0.13 m·a-1.(2)The glacier surface elevation change had a positive correlation with the altitude. The Pearson coefficient was 0.93. At the altitude of 3700~3900 m·a.s.l., the glacier surface downwasting was more dramatic as the altitude increases. From 3900 m to 5800 m·a.s.l., glacier surface elevation change gradually increased from a negative value to zero. While above 5800 m·a.s.l., the glacier surface elevation change was always positive in the accumulation area.(3)The debris-covered glaciers melted faster(the average surface elevation change was by -1.71 m·a-1)than the exposed glaciers(-0.73 m·a-1).(4)According to the meteorological data at Bomi, Zayu and Zuogong stations, it showed that the annual mean air temperature had increased significantly during 2000—2014, while the annual precipitation did not present obvious change trend. Therefore, the rapid melting of glaciers was mainly caused by regional rising temperatures. This study provides basic data support for understanding the spatial-temporal glacier changes in the Qinghai-Tibet Plateau.

参考文献/References:

[1] OERLEMANS J. Quantifying global warming from the retreat of glaciers [J]. Science, 1994, 264(5156): 243-245. DOI: 10.1126/science.264.5156.243
[2] YAO Tandong, WANG Youqing, LIU Shiying, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China [J]. Science in China Series D Earth Sciences, 2004, 47(12): 1065-1075. DOI: 10.1360/03yd0256
[3] PFEFFER W T, ARENDT A A, BLISS A, et al. The Randolph Glacier inventory: A globally complete inventory of glaciers [J]. Journal of Glaciology, 2014, 60(221): 537-552. DOI: 10.3189/2014JoG13J176
[4] 蒲健辰,姚檀栋,王宁练,等. 近百年来青藏高原冰川的进退变化[J]. 冰川冻土,2004,26(5): 517-522. [PU Jianchen, YAO Tandong, WANG Ninglian, et al. Fluctuations of the glaciers on the Qinghai-Tibetan Plateau during the past century [J]. Journal of Glaciology and Geocryology, 2004, 26(5): 517-522] DOI: 10.1007/BF02873097
[5] 鲁安新,姚檀栋,王丽红,等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土,2005,27(6): 783-792. [LU Anxin, YAO Tandong, WANG Lihong, et al. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing [J]. Journal of Glaciology and Geocryology, 2005, 27(6): 783-792] DOI: 10.7522/J.issn.1000-0240(2005)06-0783-10
[6] 秦大河,丁永建. 冰冻圈变化及其影响研究——现状、趋势及关键问题[J]. 气候变化研究进展,2009,5(4): 187-195. [QIN Dahe, DING Yongjian. Cryospheric changes and their impacts: Present, trends and key issues [J]. Advances in Climate Change Research, 2009, 5(4): 187-195] DOI: 10.1016/S1003-6326(09)60084-4
[7] OPPENHEIMER M, GLAVOVIC B C, HINKEL J, et al. Sea level rise and implications for low lying islands, coasts and communities [EB/OL]. // IPCC Special Report on the Ocean and Cryosphere in a Changing Climate(2021-11-25)[2021-11-25]. https://www.ipcc.ch/srocc/chapter/chapter-4-sea-level-rise-and-implications-for-low-lying-islands-coasts-and-communities/
[8] 王宁练,姚檀栋,徐柏青,等. 全球变暖背景下青藏高原及周边地区冰川变化的时空格局与趋势及影响[J]. 中国科学院院刊,2019,34(11): 1220-1232. [WANG Ninglian, YAO Tandong, XU Baiqing, et al. Spatiotemporal pattern, trend, and influence of glacier change in Tibetan Plateau and surroundings under global warming [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1220-1232] DOI: 10.16418/j.issn.1000-3045.2019.11.005
[9] YAO Tandong, THOMPSON L, YANG Wei, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings [J]. Nature Climate Change, 2012, 2(9): 663-667. DOI: 10.1038/NCLIMATE1580
[10] 杨威,姚檀栋,徐柏青,等. 青藏高原东南部岗日嘎布地区冰川严重损耗与消融[J]. 科学通报,2008,53(17): 2091-2095. [YANG Wei, YAO Tandong, XU Baiqing, et al. Quick ice mass loss and abrupt retreat of the maritime glaciers in the Kangri Karpo Mountains, southeast Tibetan Plateau [J]. Chinese Science Bulletin, 2008, 53(17): 2091-2095] DOI: 10.1007/s11434-008-0288-3
[11] 姚檀栋,秦大河,沈永平,等. 青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J]. 自然杂志,2013,35(3): 179-186. [YAO Tandong, QIN Dahe, SHEN Yongping, et al. Cryospheric changes and their impacts on regional water cycle and ecological conditions in the Qinghai-Tibetan Plateau [J]. Chinese Journal of Nature, 2013, 35(3): 179-186] DOI: 10.3969/j.issn.0253-9608.2013.03.004
[12] 陈发虎,傅伯杰,夏军,等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学,2019,49(11): 1659-1696. [CHEN Fahu, FU Bojie, XIA Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects [J]. Scientia Sinica Terrae, 2019, 49(11): 1659-1696] DOI: 10.1360/SSTe-2019-0174
[13] KE Linghong, SONG Chunqiao, YONG Bin, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau [J]. Remote Sensing of Environment, 2020, 242: 111777. DOI: 10.1016/j.rse.2020.111777
[14] 邬光剑,姚檀栋,王伟财,等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊,2019,34(11): 1285-1292. [WU Guangjian, YAO Tandong, WANG Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1285-1292] DOI: 10.16418/j.issn.1000-3045.2019.11.011
[15] 叶庆华,程维明,赵永利,等. 青藏高原冰川变化遥感监测研究综述[J]. 地球信息科学学报,2016,18(7): 920-930. [YE Qinghua, CHENG Weiming, ZHAO Yongli, et al. A Review on the research of glacier changes on the Tibetan Plateau by remote sensing technologies [J]. Journal of Geo-Information Science, 2016,18(7): 920-930] DOI: 10.3724/SP.J.1047.2016.00920
[16] ROUND V, LEINSS S, HUSS M, et al. Surge dynamics and lake outbursts of Kyagar Glacier, Karakoram [J]. The Cryosphere, 2017, 11(2):723-739. DOI: 10.5194/tc-11-723-2017
[17] LIU Guang, FAN Jinghui, ZHAO Feng, et al. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry [J]. Journal of Mountain Science, 2017, 14(5): 859-869. DOI: 10.1007/s11629-016-3992-5
[18] 吴坤鹏,刘时银,蒋宗立, 等. 1980—2014年岗日嘎布地区冰川高程变化数据集[J]. 中国科学数据,2018,3(4): 93-104. [WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. A dataset of glacier elevation changes in the Kangri Karpo Mountains during 1980-2014 [J]. China Science Data, 2018, 3(4): 93-104] DOI: 10.11922/sciencedb.574
[19] 张其兵,康世昌,王晶. 2000—2014年祁连山西段老虎沟12号冰川高程变化[J]. 冰川冻土,2017,39(4): 733-740.[ZHANG Qibing, KANG Shichang, WANG Jing. Elevation change of the Laohugou Glacier No.12 in the weastern Qilian Mountain from 2000 to 2014 [J]. Journal of Glaciology and Geocryology, 2017,39(4): 733-740] DOI: 10.7522/j.issn.1000-0240.2017.0083
[20] LI Gang, LIN Hui. Recent decadal glacier mass balances over the western Nyaingentanglha Mountains and the increase in their melting contribution to Nam Co Lake measured by differential bistatic SAR interferometry [J]. Global and Planetary Change, 2017, 149: 177-190. DOI: 10.1016/j.gloplacha.2016.12.018
[21] LIU Lin, JIANG Liming, JIANG Houjun, et al. Accelerated glacier mass loss(2011-2016)over the Puruogangri ice field in the inner Tibetan Plateau revealed by bistatic InSAR measurements [J]. Remote Sensing of Environment, 2019, 231: 111241. DOI: 10.1016/j.rse.2019.111241
[22] WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data [J]. Journal of Glaciology, 2019, 65(251): 422-439. DOI: 10.1017/jog.2019.20
[23] LI Gang, LIN Hui, YE Qinghua. Heterogeneous decadal glacier downwasting at the Mt. Everest(Qomolangma)from 2000 to 2012 based on multi-baseline bistatic SAR interferometry [J]. Remote Sensing of Environment, 2018, 206: 336-349. DOI: 10.1016/j.rse.2017.12.032
[24] SUN Yafei, JIANG Liming, LIU Lin, et al. Mapping glacier elevations and their changes in the western Qilian Mountains, northern Tibetan Plateau, by bistatic InSAR [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(1): 68-78. DOI: 10.1109/JSTARS.2017.2764751
[25] REN Shaoting, MENENTI M, LI Jia, et al. Glacier mass balance in the Nyainqentanglha mountains between 2000 and 2017 retrieved from ZiYuan-3 stereo images and the SRTM DEM [J]. Remote Sensing, 2020, 12(5): 864. DOI: 10.3390/rs12050864
[26] 张鑫,周建民,刘志平. 基于KH-9数据对青藏高原山地冰川DEM提取及精度评价——以普若岗日冰川和雅弄冰川为例[J]. 冰川冻土,2019,41(1): 27-35. [ZHANG Xin, ZHOU Jianmin, LIU Zhiping. DEM extraction and precision evaluation of mountain glaciers in the Qianghai-Tibet Plateau based on KH-9 data: Take the Purog Kangri glacier and Jiong glacier as example [J].Journal of Glaciology and Geocryology, 2019, 41(1): 27-35] DOI: 10.7522/j.issn.1000-0240.2019.0005
[27] ZHOU Yushan, LI Zhiwei, LI Jia, et al. Glacier mass balance in the Qinghai-Tibet Plateau and its surroundings from the mid-1970s to 2000 based on Hexagon KH-9 and SRTM DEMs [J]. Remote Sensing of Environment, 2018, 210: 96-112. DOI: 10.1016/j.rse.2018.03.020
[28] 宗继彪,叶庆华,田立德. 基于ICESat/GLAS, SRTM DEM和GPS观测青藏高原纳木那尼冰面高程变化(2000—2010年)[J]. 科学通报,2014,59(21): 2108-2118. [ZONG Jibiao, YE Qinghua, TIAN Lide. Recent Naimona'Nyi Glacier surface elevation changes on the Tibetan Plateau based on ICESat/GLAS, SRTM DEM and GPS measurements [J]. Chinese Science Bulletin, 2014, 59(21): 2108-2118] DOI: 10.1360/972013-1243
[29] 程澍,熊章强,李新武, 等. 基于CryoSat-2数据的纳木那尼冰川冰面高程变化方法研究[J]. 测绘与空间地理信息,2018,41(1): 189-192. [CHENG Shu, XIONG Zhangqiang, LI Xinwu, et al. Naimona' Nyi Glacier elevation changes from 2010 to 2016 using Cryosat-2 satellite data [J]. Geomatics and Spatial Information Technology, 2018,41(1): 189-192] DOI: 10.3969/j.issn.1672-5867.2018.01.052
[30] 孙亚飞,江利明,柳林,等. TanDEM-X双站InSAR地形提取及精度评估[J]. 武汉大学学报(信息科学版),2016,41(1): 100-105. [SUN Yafei, JIANG Liming, LIU Lin, et al. Generating and evaluating digital terrain model with TanDEM-X bistatic SAR interferometry [J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 100-105] DOI: 10.13203/j.whugis20130618
[31] ZHANG Zhen, LIU Shiyin, JIANG Zongli, et al. Glacier variations at Xinqingfeng and Malan ice caps in the inner Tibetan Plateau since 1970 [J]. Remote Sensing, 2020, 12(3): 421. DOI: 10.3390/rs12030421
[32] CAO Bo, GUAN Weijin, LI Kaiji, et al. Area and mass changes of glaciers in the west Kunlun mountains based on the analysis of multi-temporal remote sensing images and DEMs from 1970 to 2018 [J]. Remote Sensing, 2020, 12(16): 2632. DOI: 10.3390/rs12162632
[33] ZHOU Yushan, HU Jun, LI Zhiwei, et al. Quantifying glacier mass change and its contribution to lake growths in central Kunlun during 2000-2015 from multi-source remote sensing data [J]. Journal of Hydrology, 2019, 570: 38-50. DOI: 10.1016/j.jhydrol.2019.01.007
[34] VIJAY S, BRAUN M. Early 21st century spatially detailed elevation changes of Jammu and Kashmir glaciers(Karakoram-Himalaya)[J]. Global and Planetary Change, 2018, 165: 137-146. DOI: 10.1016/j.gloplacha.2018.03.014
[35] RANKL M, BRAUN M. Glacier elevation and mass changes over the central Karakoram region estimated from TanDEM-X and SRTM/X-SAR digital elevation models [J]. Annals of Glaciology, 2016, 57(71): 273-281. DOI: 10.3189/2016AoG71A024
[36] LIU Lin, JIANG Liming, ZHANG Zhimin, et al. Recent accelerating glacier mass loss of the Geladandong Mountain, inner Tibetan Plateau, estimated from ZiYuan-3 and TanDEM-X measurements [J]. Remote Sensing, 2020, 12(3): 472. DOI: 10.3390/rs12030472
[37] LIU Lin, JIANG Liming, SUN Yafei, et al. Morphometric controls on glacier mass balance of the Puruogangri ice field, central Tibetan Plateau [J]. Water, 2016, 8(11): 496. DOI: 10.3390/w8110496
[38] WU Kunpeng, LIU Shiyin, JIANG Zongli, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories [J]. The Cryosphere, 2018, 12(1): 103-121. DOI: 10.5194/tc-12-103-2018
[39] 吴坤鹏,刘时银,鲍伟佳,等. 1980—2015年青藏高原东南部岗日嘎布山冰川变化的遥感监测[J]. 冰川冻土,2017,39(1): 24-34. [WU Kunpeng, LIU Shiyin, BAO Weijia, et al. Remote sensing monitoring of the glacier change in the Gangrigabu Range, southeast Tibetan Plateau from 1980 through 2015 [J]. Journal of Glaciology and Geocryology, 2017, 39(1): 24-34] DOI: 10.7522/j.issn.1000-0240.2017.0004
[40] 李霞,杨太保,冀琴. 岗日嘎布地区冰川变化特征研究[J]. 水土保持研究,2014,21(4):233-237. [LI Xia, YANG Taibao, JI Qin. Study on glacier variations in the Gangrigabu Range [J]. Research of Soil and Water Conservation, 2014, 21(4): 233-237] DOI: 10.13869/j.cnki.rswc.2014.04.046
[41] 刘时银,上官冬辉,丁永建,等. 20世纪初以来青藏高原东南部岗日嘎布山的冰川变化[J]. 冰川冻土,2005,27(1): 55-63. [LIU Shiyin, SHANGGUAN Donghui, DING Yongjian, et al. Glacier variations since the early 20th century in the Gangrigabu Range, southeast Tibetan Plateau [J]. Journal of Glaciology and Geocryology, 2005, 27(1): 55-63] DOI: 10.3969/j.issn.1000-0240.2005.01.008
[42] 刘时银,姚晓军,郭万钦,等. 基于第二次冰川编目的中国冰川现状[J]. 地理学报,2015,70(1): 3-16. [LIU Shiyin, YAO Xiaojun, GUO Wanqin, et al. The contemporary glaciers in China based on the Second Chinese Glacier Inventory [J]. Acta Geographica Sinica, 2015, 70(1): 3-16] DOI: 10.11821/dlxb201501001
[43] YE Qinghua, ZONG Jibiao, TIAN Lide, et al. Glacier changes on the Tibetan Plateau derived from Landsat imagery: Mid-1970s-2000-13 [J]. Journal of Glaciology, 2017, 63(238): 273-287. DOI: 10.1017/jog.2016.137
[44] CHEN Yingying, YANG Kun, HE Jie, et al. Improving land surface temperature modeling for dry land of China [J]. Journal of Geophysical Research, 2011, 116:D20104. DOI: 10.1029/2011JD015921
[45] NUTH C, KAAB A. Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change [J]. The Cryosphere, 2011, 5(1): 271-290. DOI: 10.5194/tc-5-271-2011
[46] HUSS M. Density assumptions for converting geodetic glacier volume change to mass change [J]. The Cryosphere, 2013, 7(3): 877-887. DOI: 10.5194/tc-7-877-2013
[47] KAAB A, TREICHLER D, NUTH C, et al. Brief communication: Contending estimates of 2003-2008 glacier mass balance over the Pamir-Karakoram-Himalaya [J]. The Cryosphere, 2015, 9(2): 557-564. DOI: 10.5194/tc-9-557-2015
[48] SHEAN D E, BHUSHAN S, MONTESANO P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance [J]. Frontiers in Earth Science, 2020(7): 363. DOI: 10.3389/feart.2019.00363
[49] 李成秀,杨太保,田洪阵. 近40年来西昆仑山冰川及冰湖变化与气候因素[J]. 山地学报,2015,33(2): 157-165. [LI Chengxiu, YANG Taibao, TIAN Hongzhen. Variation of western Kunlun mountain glaciers monitored by remote sensing during 1976-2010 [J]. Mountain Research, 2015, 33(2): 157-165] DOI: 10.16089/j.cnki.1008-2786.000021
[50] 张威,王宁练,李想,等. 近20a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J]. 山地学报, 2019,37(3): 347-358. [ZHANG Wei, WANG Ninglian, LI Xiang, et al. Glacier changes and its response to climate change in the Gilgit River basin, western Karakorum Mountains over the past 20 years [J]. Mountain Research, 2019, 37(3): 347-358] DOI: 10.16089/j.cnki.1008-2786.000428
[51] 刘巧,张勇. 贡嘎山海洋型冰川监测与研究:历史,现状与展望[J]. 山地学报,2017,35(5): 717-726. [LIU Qiao, ZHANG Yong. Studies on the dynamics of monsoonal temperate glaciers in Mt.Gongga: A review [J]. Mountain Research, 2017, 35(5): 717-726] DOI: 10.16089/j.cnki.1008-2786.000271
[52] 张勇,刘时银. 中国冰川区表碛厚度估算及其影响研究进展[J]. 地理学报,2017,72(9): 1606-1620. [ZHANG Yong, LIU Shiyin. Research progress on debris thickness estimation and its effect on debris-covered glaciers in western China [J]. Acta Geographica Sinica, 2017, 72(9): 1606-1620] DOI: 10.11821/dlxb201709006

相似文献/References:

[1]郑本兴,马秋华.贡嘎山区全新世冰川变化与泥石流发育的关系[J].山地学报,1994,(01):1.
[2]何毅,杨太保,冀琴,等.基于遥感资料的中亚阿拉套地区冰川变化及动因分析[J].山地学报,2015,(02):148.
 HE Yi,YANG Taibao,JI Qin.Glacier Variation and Motivation Based on Remote Sensing Data in the Central Asia Alatau Regions[J].Mountain Research,2015,(5):148.
[3]李成秀,杨太保,田洪阵,等.近40年来西昆仑山冰川及冰湖变化与气候因素[J].山地学报,2015,(02):157.
 LI Chengxiu,YANG Taibao,TIAN Hongzhen.Variation of Western Kunlun Mountain Glaciers Monitored by Remote Sensing during 1976—2010[J].Mountain Research,2015,(5):157.

备注/Memo

备注/Memo:
收稿日期(Received date):2020-10-25; 改回日期(Accepted date): 2021-07-30
基金项目(Foundation item):国家自然科学基金项目(91747201,41530748); 第二次青藏高原综合科学考察研究(2019QZKK0202); 中国科学院“十三五”信息化建设专项(XXH13505-06)[National Natural Science Foundation of China(91747201,41530748); The Second Comprehensive Scientific Investigation and Research on the Tibetan Plateau(2019QZKK0202); Informatization Construction of the 13th Five Year Plan of Chinese Academy of Sciences(XXH13505-06)]
作者简介(Biography):姬鑫慧(1996-),女,山西晋城人,硕士研究生,主要研究方向:冰川遥感。[JI Xinhui(1996-), female, born in Jincheng, Shanxi province, M.Sc. candidate, research on remote sensing of glaciers] E-mail: jixinhui@itpcas.ac.cn
*通讯作者(Corresponding author):叶庆华(1972),女,博士,研究员,研究方向:资源环境遥感与GIS应用。[YE Qinghua(1972-), female, Ph.D., professor, specialized in remote sensing in resources & environment change and its applications of GIS] E-mail: yeqh@itpcas.ac.cn
更新日期/Last Update: 2021-09-30