[1]韩用顺,孙湘艳,刘通,等.基于证据权-投影寻踪模型的藏东南地质灾害易发性评价[J].山地学报,2021,(5):672-686.[doi:10.16089/j.cnki.1008-2786.000629)]
 HAN Yongshun,SUN Xiangyan,LIU Tong,et al.Susceptibility Evaluation of Geological Hazards Based on Evidence Weight-Projection Pursuit Model in Southeast Tibet, China[J].Mountain Research,2021,(5):672-686.[doi:10.16089/j.cnki.1008-2786.000629)]
点击复制

基于证据权-投影寻踪模型的藏东南地质灾害易发性评价()
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2021年第5期
页码:
672-686
栏目:
山地灾害
出版日期:
2021-09-25

文章信息/Info

Title:
Susceptibility Evaluation of Geological Hazards Based on Evidence Weight-Projection Pursuit Model in Southeast Tibet, China
文章编号:
1008-2786-(2021)5-672-15
作者:
韩用顺12孙湘艳1刘通2陈勇国3*
1. 湖南科技大学 资源环境与安全工程学院,湖南 湘潭 411201; 2. 河南理工大学 测绘与国土信息工程学院,河南 焦作 454000; 3. 湖南科技学院 土木与环境工程学院,湖南 永州 425199
Author(s):
HAN Yongshun12 SUN Xiangyan1 LIU Tong2 CHEN Yongguo3*
1. School of Resource Environment and Safety, Hunan University of Science and Technology, Xiangtan 411201,Hunan China; 2. Surveying and Land Information Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan China; 3. School of Civil and Environmental Engineering, Hunan University of Science and Engineering, Yongzhou 425199, Hunan China
关键词:
地质灾害 易发性评价 指标体系 证据权-投影寻踪模型 藏东南
Keywords:
geological disaster susceptibility evaluation index system evidence weight-projection pursuit model Southeast Tibet
分类号:
X43
DOI:
10.16089/j.cnki.1008-2786.000629)
文献标志码:
A
摘要:
藏东南地区是我国海洋性冰川集中区、重大工程建设区和地质灾害易发区,高原地质灾害易发性评价是该区防灾减灾的重要技术基础和热点难点之一。本文考虑了气候变化和冰川积雪活动对高寒山区地质灾害形成发育的影响,引入了积温和冰川积雪消融量两个特色因子,提出了距平差气象插补法和冰川积雪消融量概化模型,并从孕灾环境、动力条件和人类扰动等方面共选取了13个因子,建立了藏东南地质灾害易发性评价指标体系,构建了证据权-投影寻踪模型,实现了灾害易发性评价计算、分级区划和精度验证。结果表明:(1)冰川积雪消融量和积温对高寒山区地质灾害易发性影响显著,其最佳向量值达0.088和0.579;(2)提出的距平差法气温插补模型对气温预测效果优于平均值法和线性插值法,可有效解决气象数据缺失和插补值被放大的问题;(3)大部分研究区为中度及以上灾害易发区,占总面积的65.98%,其中极高易发区集中在深大活动断裂带和干流水系两侧2 km区域内,高易发区集中在干流水系两侧2~5 km的近似环状区域,中易发区主要分布在峡谷和干流水系两侧5~10 km 地带以及大江大河的支流区域;(4)建立的证据权-投影寻踪模型能更好地实现研究区地质灾害易发性评价,其成功率曲线检验值达0.884,具有较好实用性。本研究成果可以丰富区域地质灾害易发性评价理论和方法,并为藏东南地区地质灾害易发性的客观快速评价提供借鉴和参考。
Abstract:
Southeast Tibet is a concentrated area of marine glaciers, a major engineering construction area and an area prone to geological hazards in China. The susceptibility evaluation of plateau geological hazards is one of the important technical bases and hot issues for hazards prevention and mitigation in this area. In this paper, considering the impact of climate change and glacier snow activities on the formation and development of geological hazards in alpine mountainous areas, two characteristic factors such as the accumulated temperature and the glacier snow melting amount were introduced, and the distance adjustment meteorological interpolation method and the generalized model of glacier snow ablation amount were proposed respectively. Then, thirteen factors were selected from the aspects of hazard-developing environment, dynamic conditions and human disturbance, and the susceptibility evaluation index system of geological hazards in Southeast Tibet was established. Finally, the evidence weight-projection pursuit model was constructed to realize the susceptibility evaluation calculation, classification zoning and accuracy verification of geological hazards in study area. The results show that:(1)Accumulated temperature and glacier snow melting amount had a significant impact on the susceptibility of geological hazards in alpine mountainous areas, with the optimal vector values of 0.088 and 0.579.(2)The proposed temperature interpolation model based on the distance adjustment method was better than the average method and the linear interpolation method for temperature prediction, which can effectively solve the problems of missing meteorological data and amplification of interpolation values.(3)Most of the study areas were located in moderate and above geo-hazard susceptibility zones, accounting for 65.98% of the total area, the extremely high-susceptibility zones were concentrated within the area of 2 km on both sides of the deep active faults and the main stream systems, the high-susceptibility zones were concentrated in the approximate ring-shape area of 2~5 km on both sides of the main stream system and the moderate-susceptibility zones were mainly distributed in the area of 5~10 km on both sides of the canyon and the main stream system as well as the tributaries of large rivers.(4)The established evidence weight-projection pursuit model could better realize the susceptibility evaluation of geological hazards in the study area, and its success rate curve test value reached 0.884, which was of good practicability. The research results enrich the theory and method of regional geological disaster susceptibility evaluation, and provide reference for objective and rapid evaluation of geological disaster susceptibility in Southeast Tibet.

参考文献/References:

[1] 张勇, 刘时银, 刘巧. 1952-2009年青藏高原东南部贡嘎山海螺沟流域冰川物质平衡数据集[J]. 中国科学数据(中英文网络版), 2018, 3(4):7-16. [ZHANG Yong, LIU Shiyin, LIU Qiao. A dataset of glacier mass balance of Hailuogou catchment in Mount Gongga, southeastern Tibetan Plateau, during 1952-2009 [J]. China Scientific Data, 2018, 3(4):7-16] DOI: 10.11922/csdata.2018.0042.zh
[2] 王培清, 徐国涛, 何强. 西藏藏东南地区典型地质灾害成因及防治技术浅析[J]. 西藏大学学报(自然科学版), 2013, 28(1):16-20. [WANG Peiqing, XU Guotao, HE Qiang. Analysis on the causes of typical geological disasters in the southeastern Tibet and its prevention technology [J]. Journal of Tibet University, 2013, 28(1):16-20] DOI: 10.16249/j.cnki.54-1034/c.2013.01.002
[3] 崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11):1313-1321. [CUI Peng, GUO Xiaojun, JIANG Tianhai, et al. Disaster effect induced by Asian Water Tower change and mitigation strategies [J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1313-1321] DOI: 10.16418/j.issn.1000-3045.2019.11.014
[4] ANIYA M. Landslide-susceptibility mapping in the Amahata River Basin, Japan [J]. Annals of the Association of American Geographers, 1985, 75(1):102-114. DOI: 10.1111/j.1467-8306.1985.tb00061.x
[5] 谢谟文, 江崎哲郎, 周国云. 基于边坡单元的三维滑坡灾害评价的GIS方法[J]. 岩石力学与工程学报, 2003, 22(6):969-976. [XIE Mowen, TESTURO Esaki, ZHOU Guoyun. GIS method for slope-unit-based 3D landslide hazard evaluation [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(6):969-976]
[6] SHAHRI A A, SPROSS J, JOHANSSON F, et al. Landslide susceptibility hazard map in southwest Sweden using artificial neural network [J]. Catena, 2019, 183(12):104225. DOI: 10.1016/j.catena.2019.104225
[7] MANDAL S, MAITI R. Application of Analytical Hierarchy Process(AHP)and Frequency Ratio(FR)model in assessing landslide susceptibility and risk [M]. Singapore: Springer Science + Business Media, 2015:199-226. DOI: 10.1007/978-981-287-146-6-7
[8] KALANTAR B, PRADHAN B, NAGHIBI S A, et al. Assessment of the effects of training data selection on the landslide susceptibility mapping: A comparison between support vector machine(SVM), logistic regression(LR)and artificial neural networks(ANN)[J]. Geomatics, Natural Hazards and Risk, 2018, 9(1):49-69. DOI: 10.1080/19475705.2017.1407368
[9] AKGUN A, SEZER E A, NEFESLIOGLU H A, et al. An easy-to-use MATLAB program(MamLand)for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm [J]. Computers and Geosciences, 2012, 38(1):23-34. DOI: 10.1016/j.cageo.2011.04.012
[10] FEIZIZADEH B, BLASCHKE T. GIS-multicriteria decision analysis for landslide susceptibility mapping: Comparing three methods for the Urmia lake basin, Iran [J]. Natural Hazards, 2013, 65(3):2105-2128. DOI: 10.1007/s11069-012-0463-3
[11] 谭炳炎. 泥石流沟严重程度的数量化综合评判[J]. 铁道学报, 1986, 8(2):51-57. [TAN Bingyan. Quantified comprehensive evaluation for the scope and intensity of mud-rock flow gully activity [J]. Journal of the China Railway Society, 1986, 8(2):51-57]
[12] 白世彪, 王建, 闾国年, 等. 基于GIS和双变量分析模型的三峡库区滑坡灾害易发性制图[J]. 山地学报, 2007, 25(1):85-92. [BAI Shibiao, WANG Jian, LYU Guonian, et al. GIS-based and data drive bivariate landslide susceptibility mapping in the Three Gorge Area, China [J]. Mountain Research, 2007, 25(1):85-92]
[13] 杨志华, 张永双, 郭长宝, 等. 青藏高原东缘地质灾害影响因子敏感性分析[J]. 工程地质学报, 2018, 26(3):673-683. [YANG Zhihua, ZHANG Yongshuang, GUO Changbao, et al. Sensitivity analysis on causative factors of geohazards in eastern margin of Tibetan plateau [J]. Journal of Engineering Geology, 2018, 26(3):673-683] DOI: 10.13544/j.cnki.jeg.2017-165
[14] 武雪玲, 任福, 牛瑞卿, 等. 斜坡单元支持下的滑坡易发性评价支持向量机模型[J]. 武汉大学学报(信息科学版), 2013, 38(12):116-120. [WU Xueling, REN Fu, NIU Ruiqing, et al. Landslide spatial prediction based on slope units and support vector machines [J]. Geomatics and Information Science of Wuhan University, 2013, 38(12):116-120] DOI: 10.13203/j.whugis2013.12.006
[15] 张永宏, 葛涛涛, 田伟, 等. 基于地质大数据的泥石流灾害易发性评价[J]. 计算机应用, 2018, 38(11):3319-3325. [ZHANG Yonghong, GE Taotao, TIAN Wei, et al. Evaluation of susceptibility to debris flow hazards based on geological big data [J]. Journal of Computer Applications, 2018, 38(11):3319-3325] DOI: 10.11772/j.issn.1001-9081.2018040789
[16] 韩用顺, 梁川, 崔鹏, 等. 地形条件对次生山地灾害易发性分析[J]. 四川大学学报(工程科学版), 2010,42(z1):15-21. [HAN Yongshun, LIANG Chuan, CUI Peng, et al. Susceptibility of mountain hazards triggered by Wenchuan earthquake to topographic factors [J]. Journal of Sichuan University(Engineering Science Edition), 2010,42(z1):15-21] DOI: 10.15961/j.jsuese.2010.s1.001
[17] 杜国梁, 张永双, 吕文明, 等. 基于加权信息量模型的藏东南地区滑坡易发性评价[J]. 灾害学, 2016, 31(2):226-234. [DU Guoliang, ZHANG Yongshuang, LYU Wenming, et al. Landslide susceptibility assessment based on weighted information value model in southeast Tibet [J]. Journal of Catastrophology, 2016, 31(2):226-234] DOI: 10.3969/j.issn.1000-811X.2016.02.042
[18] 郭长宝, 唐杰, 吴瑞安, 等. 基于证据权模型的川藏铁路加查——朗县段滑坡易发性评价[J]. 山地学报, 2019, 37(2):240-251. [GUO Changbao, TANG Jie, WU Ruian, et al. Landslide susceptibility assessment based on WOE model along Jiacha-Langxian county section of Sichuan-Tibet Railway, China [J]. Mountain Research, 2019, 37(2):240-251] DOI: 10.16089/j.cnki.1008-2786.000418
[19] 邹强, 王青, 刘延国. 基于GIS与Logistic模型的公路泥石流易发性分析[J]. 水土保持通报, 2014, 34(3):185-189. [ZOU Qiang, WANG Qing, LIU Yanguo. Evaluation method of debris-flow susceptibility using GIS and logistic model [J]. Bulletin of Soil and Water Conservation, 2014, 34(3):185-189] DOI: 10.13961/j.cnki.stbctb.2014.03.036
[20] 胡江顺, 傅荣华, 何天牛, 等. 墨脱公路地质灾害发育分布特征[J]. 地质灾害与环境保护, 2005, 16(3):231-234+242. [HU Jiangshun, FU Ronghua, HE Tianniu, et al. Characteristics of geologic hazards developing in Motuo county [J]. Journal of Geological Hazards and Environment Preservation, 2005, 16(3):231-234+242]
[21] 郭子正, 殷坤龙, 付圣, 等. 基于GIS与WOE-BP模型的滑坡易发性评价[J]. 地球科学, 2019, 44(12):4299-4312. [GUO Zizheng, YIN Kunlong, FU Sheng, et al. Evaluation of landslide susceptibility based on GIS and WOE-BP model [J]. Earth Science, 2019, 44(12):4299-4312] DOI: 10.3799/dqkx.2018.555
[22] 闫举生, 谭建民. 基于不同因子分级法的滑坡易发性评价——以湖北远安县为例[J]. 中国地质灾害与防治学报, 2019, 30(1):56-64. [YAN Jusheng, TAN Jianmin. Landslide susceptibility assessment based on different factor classification methods—a case study in Yuan'an county of Hubei province [J]. The Chinese Journal of Geological Hazard and Control, 2019, 30(1):56-64] DOI: 10.16031/j.cnki.issn.1003-8035.2019.01.06
[23] MA Shuyue, QIU Haijun, HU Sheng, et al. Quantitative assessment of landslide susceptibility on the Loess Plateau in China [J]. Physical Geography,2020,41(6):489-516. DOI: 10.1080/02723646.2019.1674559
[24] 谢贤健,韦方强,张继,等.基于投影寻踪模型的滑坡危险性等级评价[J].地球科学——中国地质大学学报, 2015,40(9):1598-1606. [XIE Xianjian, WEI Fangqiang, ZHANG Ji, et al. Application of projection pursuit model to landslide risk classification assessment [J]. Earth Science—Journal of China University of Geosciences, 2015, 40(9):1598-1606] DOI: 10.3799/dqkx.2015.144
[25] 徐江. 藏东南地区泥石流分布特点及其活动特征[J]. 西藏科技, 2020, 327(6):17-20. [XU Jiang. Distribution and activity characteristics of debris flow in southeast Tibet [J]. Tibet Science and Technology, 2020, 327(6):17-20]
[26] 李菲, 郜永祺, 万欣, 等. 全球变暖与地球“三极”气候变化[J]. 大气科学学报, 2021,44(1):1-11. [LI Fei, GAO Yongqi, WAN Xin, et al. Earth's “three-poles” climate change under global warming [J]. Transactions of Atmospheric Sciences, 2021,44(1):1-11] DOI: 10.13878/j.cnki.dqkxxb.20201031003
[27] LOPEZ M G, WENNERSTRÖM H, NORDÉN L, et al. Location and density of rain gauges for the estimation of spatial varying precipitation [J]. Geografiska Annaler: Series A, Physical Geography, 2015, 97(1): 167-179. DOI: 10.1111/geoa.12094
[28] 刘田, 阳坤, 秦军, 等. 青藏高原中、东部气象站降水资料时间序列的构建与应用[J]. 高原气象, 2018, 37(6):1449-1457. [LIU Tian, YANG Kun, QIN Jun, et al. Construction and applications of time series of monthly precipitation at weather stations in the central and eastern Qinghai-Tibetan Plateau [J]. Plateau Meteorology, 2018, 37(6):1449-1457] DOI: 10.7522/j.issn.1000-0534.2018.00060
[29] GOMEZ J L, PASTORIZA F T, ÁLVAREZ E G, et al. Comparison between geostatistical interpolation and numerical weather model predictions for meteorological conditions mapping [J]. Infrastructures, 2020, 5(2):15. DOI: 10.3390/infrastructures5020015
[30] 金菊良, 刘东平, 周戎星, 等. 基于投影寻踪权重优化的水资源承载力评价模型[J]. 水资源保护, 2021,37(3):1-6. [JIN Juliang, LIU Dongping, ZHOU Rongxing, et al. Evaluation model of water resources carrying capacity based on projection pursuit weight optimization [J]. Water Resources Protection, 2021,37(3):1-6] DOI: 10.3880/j.issn.1004-6933.2021.03.001
[31] 范强, 巨能攀, 向喜琼, 等. 证据权法在区域滑坡危险性评价中的应用——以贵州省为例[J]. 工程地质学报, 2014, 22(3):474-481. [FAN Qiang, JU Nengpan, XIANG Xiqiong, et al.Landslides hazards assessment with weights of evidence: A case study in Guizhou, China [J], Journal of Engineering Geology, 2014, 22(3):474-481] DOI: 10.13544/j.cnki.jeg.2014.03.017
[32] 王顺久, 张欣莉, 丁晶, 等. 投影寻踪聚类模型及其应用[J]. 长江科学院院报, 2002, 19(6): 53-55+6. [WANG Shunjiu, ZHANG Xinli, DING Jing, et al. Immune evolutionary algorithm and its application to parameters optimization in storm intensity formula [J]. Journal of Yangtze River Scientific Research Institute, 2002, 19(6): 53-55+6]
[33] PRADHAN B, LEE S. Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models [J]. Environment Earth Science, 2010, 60:1037-1054. DOI: 10.1007/s12665-009-0245-8
[34] 赵传熙, 杨威, 朱美林, 等. 冰川区不同气温估算方法评估——以藏东南帕隆4号冰川为例[J]. 冰川冻土, 2019, 41(6):1281-1291. [ZHAO Chuanxi, YANG Wei, ZHU Meilin, et al. Evaluation on three methods of temperature estimation at glacierized reigons: Taking the Parlung No.4 Glacier in the southeastern Tibetan Plateau as example [J]. Journal of Glaciology and Geocryology, 2019, 41(6):1281-1291] DOI: 10.7522/j.issn.1000-0240.2019.0085

相似文献/References:

[1]巩杰,赵彩霞,王合领,等.基于地质灾害的陇南山区生态风险评价——以陇南市武都区为例[J].山地学报,2012,(05):570.
 GONG Jie,ZHAO Caixia,WANG Heling,et al.Ecological Risk Assessment of Longnan Mountainous Area Based on Geological Disasters——A Case Study of Wudu[J].Mountain Research,2012,(5):570.
[2]牛全福,程维明,兰恒星,等.基于信息量模型的玉树地震次生地质灾害危险性评价[J].山地学报,2011,(02):243.
 NIU Quanfu,,et al.Susceptibility Assessment of Secondary Geological Disaster Based on Information Value Methodology for Yushu Earthquake Region[J].Mountain Research,2011,(5):243.
[3]孙伟,朱诚,王晓翠,等.南京幕府山地区地质灾害与地热调查[J].山地学报,2011,(06):753.
 SUN Wei,ZHU Cheng,MA Chunmei,et al.Investigation of Geothermal Resource and Geologic Hazards at Mufu Mountain Area in Nanjing[J].Mountain Research,2011,(5):753.
[4]许强,黄润秋.非线性科学理论在地质灾害评价预测中的应用——地质灾害系统分析原理[J].山地学报,2000,(03):272.
[5]许强,黄润秋,向喜琼.地质灾害发生时间和空间的预测预报[J].山地学报,2000,(S1):112.
[6]许强,黄润秋.地质灾害的非线性数据处理与建模技术[J].山地学报,2000,(S1):123.
[7]王帅,王深法,俞建强.构造活动与地质灾害的相关性——浙西南山地滑坡、崩塌、泥石流的分布规律[J].山地学报,2002,(01):47.
[8]柴贺军,刘汉超.岷江上游多级多期崩滑堵江事件初步研究[J].山地学报,2002,(05):616.
[9]邓辉,黄润秋.InSAR技术在地形测量和地质灾害研究中的应用[J].山地学报,2003,(03):373.
[10]马东涛,崔鹏,陈书涛,等.南水北调西线工程调水区地质灾害问题[J].山地学报,2003,(05):582.

备注/Memo

备注/Memo:
收稿日期(Received date):2021-05-20; 改回日期(Accepted date):2021-09-10
基金项目(Foundation item):湖南省自然科学基金(2020JJ4295); 交通运输部科技计划项目(2015-316-T19-060); 湖南省普通高等学校教学改革研究项目(HNJG-2020-0481)。 [Natural Science Foundation of Hunan Province(2020JJ4295); Ministry of Transport Science and Technology Program(2015-316-T19-060); Research Project on Teaching Reform of Colleges and Universities in Hunan Province(HNJG-2020-0481)]
作者简介(Biography):韩用顺(1974-),男,河南信阳人,博士,教授,主要研究方向:灾害监测评估与3S技术及应用。[HAN Yongshun(1990-), male, born in Xinyang, Henan province, Ph.D., professor, research on disaster monitoring assessment, 3S technologies and applications] E-mail: yongshunhan@126.com
*通讯作者(Corresponding author):陈勇国(1991-),男,硕士,讲师,主要研究方向:灾害遥感与3S技术及应用。[CHEN Yongguo(1991-), male, M.Sc., lecturer, specialized in disaster remote sensing, 3S technology and application] E-mail: chenyongguo827@163.com
更新日期/Last Update: 2021-09-30