参考文献/References:
[1] 吴善百, 廖丽萍, 韦遥, 等. 初始干密度对桂东南降雨型花岗岩残积土滑坡起动模式的影响[J]. 山地学报, 2020,38(6):881-893. [WU Shanbai, LIAO Liping, WEI Yao, et al. Effects of initial dry density on the initiation mode of rainfall-induced granite residual soil landslide, southeastern Guangxi province, China [J]. Mountain Research, 2020,38(6):881-893] DOI: 10.16089/j.cnki.1008-2786.000564
[2] 徐辉, 刘海知. 诱发滑坡的多尺度降雨特征[J]. 山地学报, 2019,37(6):858-867. [XU Hui, LIU Haizhi. Multi-scale rainfall characteristics of rainfall-induced landslides [J]. Mountain Research, 2019, 37(6): 858-867] DOI: 10.16089/j.cnki.1008-2786.000476
[3] 安冬, 宋琨, 仪政, 等. 一种基于EEMD-RFR的水库滑坡台阶状位移预测模型[J]. 山地学报, 2021,39(1):143-150. [AN Dong, SONG Kun, YI Zheng, et al. A prediction model for reservoir landslide step-like displacements using combined EEMD and RFR method [J]. Mountain Research, 2021,39(1):143-150] DOI: 10.16089/j.cnk.1008-2786.000582
[4] 韩贺鸣, 张磊, 施斌, 等. 基于光纤监测和PSO-SVM模型的马家沟滑坡深部位移预测研究[J]. 工程地质学报, 2019,27(4):853-861. [HAN Heming, ZHANG Lei, SHI Bin, et al. Prediction of deep displacement of Majiagou landslide based on optical fiber monitoring and PSO-SVM model [J]. Journal of Engineering Geology, 2019,27(4):853-861] DOI: 10.13544/j.cnki.jeg.2018-257
[5] 李仕波, 李德营, 张玉恩, 等. 基于LS-SVM模型的白水河滑坡台阶状位移预测[J]. 长江科学院院报, 2019,36(4):55-59+76. [LI Shibo, LI Deying, ZHANG Yuen, et al. Displacement prediction of Baishuihe step-like landslide by Least Square Support Vector Machine [J]. Journal of Yangtze River Scientific Research Institute, 2019,36(4):55-59+76] DOI: 10.11988/ckyyb.20170944
[6] 廖康, 吴益平, 李麟玮, 等. 基于时间序列与GWO-ELM模型的滑坡位移预测[J]. 中南大学学报(自然科学版), 2019,50(3):619-626. [LIAO Kang, WU Yiping, LL Linwei, et al. Displacement prediction model of landslide based on time series and GWO-ELM [J]. Journal of Central South University(Science and Technology), 2019,50(3):619-626] DOI: 10.11817/j.issn.1672-7207.2019.03.015
[7] SONG Jingkuan, GUO Yuyu, GAO Lianli, et al. From deterministic to generative: Multimodal stochastic RNNs for video captioning [J]. IEEE Transactions on Neural Networks and Learning Systems, 2019,30(10):3047-3058. DOI: 10.1109/TNNLS.2018.2851077
[8] SHEN Shuilong, NJOCK P G A, ZHOU Annan, et al. Dynamic prediction of jet grouted column diameter in soft soil using Bi-LSTM deep learning [J]. Acta Geotechnica, 2021,16(1):303-315. DOI: 10.1007/s11440-020-01005-8
[9] 周飞, 许强, 亓星, 等. 灌溉诱发突发性黄土滑坡机理研究[J].山地学报, 2020,38(1):73-82. [ZHOU Fei, XU Qiang, QI Xing, et al. The mechanism study of the Irrigation-induced sudden loess landslide [J]. Mountain Research, 2020,38(1):73-82] DOI: 10.16089/j.cnki.1008-2786.000492
[10] 高彩云. 基于智能算法的滑坡位移预测与危险性评价研究[D]. 北京: 中国矿业大学(北京), 2016. [GAO Caiyun. Research on landslide displacement prediction and risk assessment based on intelligent algorithms [D]. Beijing: China University of Mining and Technology(Beijing), 2016]
[11] XING Yin, YUE Jianping, CHEN Chuang, et al. Dynamic displacement forecasting of Dashuitian landslide in China using variational mode decomposition and stack long short-term memory network [J]. Applied Sciences, 2019,9: 2951. DOI: 10.3390/app9152951
[12] ZHOU Chao, YIN, Kunlong, CAO Ying, et al. Displacement prediction of step-like landslide by applying a novel kernel extreme learning machine method [J]. Landslides, 2018,15(11):2211-2225. DOI: 10.1007/s10346-018-1022-0
[13] SHIHABUDHEN K V, PILLAI G N, PEETHAMBARAN B. Prediction of landslide displacement with controlling factors using Extreme Learning Adaptive Neuro-Fuzzy Inference System(ELANFIS)[J]. Applied Soft Computing, 2017,61:892-904. DOI: 10.1016/j.asoc.2017.09.001
[14] ZHANG Junrong, TANG Huiming, WEN Tao, et al. A hybrid landslide displacement prediction method based on CEEMD and DTW-ACO-SVR—cases studied in the Three Gorges Reservoir area [J]. Sensors, 2020,20:4287. DOI: 10.3390/s20154287
[15] 韩斐, 牛瑞卿, 李士垚, 等. 基于变分模态分解和深度置信神经网络模型的滑坡位移预测[J]. 长江科学院院报, 2020,37(8):61-68. [HAN Fei, NIU Ruiqing, LI Shiyao, et al. Landslide displacement prediction based on variational modal decomposition and deep confidence neural network model [J]. Journal of Yangtze River Scientific Research Institute, 2020,37(8):61-68] DOI: 10.11988 /ckyyb.20190638
[16] JIN Long, LI Shuai, HU Bin. RNN models for dynamic matrix inversion: A Control-theoretical perspective [J]. IEEE Transactions on Industrial Informatics, 2018,14(1):189-199. DOI: 10.1109/TII.2017.2717079
[17] HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural Computation, 1997(9):1735-1780. DOI: 10.1162/neco.1997.9.8.1735
[18] ZHAO Zheng, CHEN Weihai, WU Xingming, et al. LSTM network: A deep learning approach for short-term traffic forecast [J]. IET Intelligent Transport Systems, 2017,11(2):68-75. DOI: 10.1049/iet-its.2016.0208
[19] WANG Shouxiang, WANG Xuan, WANG Shaomin, et al. Bi-directional long short-term memory method based on attention mechanism and rolling update for short-term load forecasting [J]. Electrical Power and Energy Systems, 2019,109(7):470-479. DOI: 10.1016/j.ijepes.2019.02.022
[20] WEI Qiang, JI Zongcheng, LI Zhiheng, et al. A study of deep learning approaches for medication and adverse drug event extraction from clinical text [J]. Journal of the American Medical Informatics Association, 2020,27(1):13-21. DOI: 10.1093/jamia/ocz063
[21] 郭冠呈, 刘书明, 李俊禹, 等. 基于双向长短时神经网络的水量预测方法研究[J]. 给水排水, 2018,54(3):123-126. [GUO Guancheng, LIU Shuming, LI Junyu, et al. Study on water quality prediction method based on bidirectional long and short time neural network [J]. Water and Wastewater Engineering, 2018,54(3):123-126] DOI: 10.13789/j.cnki.wwe1964.2018.0083
[22] 李越超. 基于QPSO-LSSVM的边坡变形预测[J]. 山地学报, 2015,33(3):374-378. [LI Yuechao. Forecasting of slope displacement based on QPSO-LSSVM method [J]. Mountain Research, 2015,33(3):374-378] DOI: 10.16089/j.cnki.1008-2786.000047
[23] 郭璐, 贺可强, 贾玉跃. 水库型堆积层滑坡位移方向协调性参数及其失稳判据研究[J].水利学报, 2018,49(12):1532-1540. [GUO Lu, HE Keqiang, JIA Yuyue. Research on the displacement direction coordination parameter of colluvial landslide induced by reservoir and its warning destabilized criterion [J]. Journal of Hydraulic Engineering, 2018,49(12):1532-1540] DOI: 10.13243/j.cnki.slxb.20180520
[24] 冯子帆, 成枢, 董娟. 残差修正的GM(1,1)模型在滑坡位移预测中的应用[J]. 地理空间信息, 2019,17(9):113-115+11. [FENG Zifan, CHENG Shu, DONG Juan. Application of residual modified GM(1,1)model in landslide displacement prediction [J]. Geospatial Information, 2019,17(9):113-115+11] DOI: 10.3969/j.issn.1672-4623.2019.09.034
[25] LI Yuanyao, SUN Ronglin, YIN Kunlong, et al. Forecasting of landslide displacements using a chaos theory based wavelet analysis-volterra filter model [J]. Nature, 2019,9:19853. DOI: 10.1038/s41598-019-56405-y
[26] 郭子正, 殷坤龙, 黄发明, 等. 基于地表监测数据和非线性时间序列组合模型的滑坡位移预测[J]. 岩石力学与工程学报, 2018,37(S1):3392-3399. [GUO Zizheng, YIN Kunlong, HUANG Faming, et al. Landslide displacement prediction based on surface monitoring data and nonlinear time series combined model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(S1):3392-3399] DOI: 10.13722/j.cnki.jrme.2016.1534
[27] 王尚庆. 长江三峡滑坡监测预测预报[M]. 北京:地质出版社, 1999:59-68. [WANG Shangqing. Monitoring and forecasting of landslides in the Three Gorges of Yangtze River [M]. Beijing: Geological Publishing House, 1999:59-68]
[28] 殷坤龙, 姜清辉, 汪洋. 新滩滑坡运动全过程的非连续变形分析与仿真模拟[J]. 岩石力学与工程学, 2002,21(7):959-962. [YIN Kunlong, JIANG Qinghui, WANG Yang. Numerical simulation on the movement process of Xintan landslide by DDA method [J]. Chinese Journal of Rock Mechanics and Engineering, 2002,21(7):959-962] DOI: 10.3321/j.issn:1000-6915.2002.07.005
[29] DRAGOMIRETSKIY K, ZOSSO D. Variational mode decomposition [J]. IEEE Transactions on Signal Processing, 2014,62(3):531-544. DOI: 10.1109/TSP.2013.2288675
[30] LI Haodong, XU Ying, AN Dong, et al. Application of a flat variational modal decomposition algorithm in fault diagnosis of rolling bearings [J]. Journal of Low Frequency Noise, Vibration and Active Control, 2020,39(2):335-351. DOI: 10.1177/1461348419846730
[31] 叶正伟. 长江新滩滑坡的历史分析,趋势预测与启示[J]. 灾害学, 2000,15(3):31-35. [YE Zhengwei. Analysis of the history and developing trend of Xintan landslides and the enlightenment elicited from its detailed expatiation [J]. Journal of Catastrophe, 2000,15(3):31-35]
[32] 李麟玮, 吴益平, 苗发盛, 等. 基于变分模态分解与GWO-MIC-SVR模型的滑坡位移预测研究[J]. 岩石力学与工程学报, 2018,37(6):1395-1406. [LI Linwei, WU Yiping, MIAO Fasheng, et al. Displacement prediction of landslides based on variational mode decomposition and GWO-MIC-SVR model [J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(6):1395-1406] DOI: 10.13722/j.cnki.jrme.2017.1508
[33] GUO Zizheng, CHEN Lixia, GUI Lei, et al. Landslide displacement prediction based on variational mode decomposition and WA-GWO-BP model [J], Landslides, 2020, 17(3): 567-583. DOI: 10.1007/s10346-019-01314-4
[34] 李丽敏, 张明岳, 温宗周, 等. 基于奇异谱分析法和长短时记忆网络组合模型的滑坡位移预测[J]. 信息与控制, 2021,50(4):459-469+482. [LI Limin, ZHANG Mingyue, WEN Zongzhou, et al. Landslide displacement prediction based on singular spectrum analysis and a combined long short-term memory network model [J]. Information and Control, 2021, 50(4):459-469+482] DOI: 10.13976/j.cnki.xk.2021.0424
[35] 李麟玮. 三峡库区库岸堆积层滑坡位移预测与稳定性评价方法研究[D]. 武汉: 中国地质大学, 2021. [LI Linwei. Research on displacement prediction and stability evaluation method of landslides in reservoir bank deposits in Three Gorges Reservoir area [D]. Wuhan: China University of Geosciences, 2021] DOI: 10.27492/d.cnki.gzdzu.2021.000132
[36] 杨背背, 殷坤龙, 杜娟. 基于时间序列与长短时记忆网络的滑坡位移动态预测模型[J].岩石力学与工程学报, 2018,37(10):2334-2343. [YANG Beibei, YIN Kunlong, DU Juan. A model for predicting landslide displacement based on time series and long and short term memory neural network [J]. Chinese Journal of Rock Mechanics and Engineering, 2018,37(10):2334-2343] DOI: 10.13722/j.cnki.jrme.2018.0468