[1]蒋先刚,刘维明,*,等.基于HEC-RAS模型的雅江中游古高能洪水的模拟研究[J].山地学报,2022,(2):276-288.[doi:10.16089/j.cnki.1008-2786.000671]
 JIANG Xiangang,LIU Weiming*,WEN Susong,et al.Simulation of Ancient High-Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC-RAS Model[J].Mountain Research,2022,(2):276-288.[doi:10.16089/j.cnki.1008-2786.000671]
点击复制

基于HEC-RAS模型的雅江中游古高能洪水的模拟研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第2期
页码:
276-288
栏目:
山地灾害
出版日期:
2022-03-25

文章信息/Info

Title:
Simulation of Ancient High-Energy Flood in the Middle Reaches of the Yarlung Zangbo River Based on HEC-RAS Model
文章编号:
1008-2786-(2022)2-276-13
作者:
蒋先刚1刘维明2 3*文宿菘1吴朝华2
1. 四川农业大学 土木工程学院,四川 都江堰 611830; 2. 中国科学院、水利部成都山地灾害与环境研究所山地灾害与地表过程重点实验室,成都 610041; 3. 中国-巴基斯坦地球科学研究中心,伊斯兰堡 45320,巴基斯坦
Author(s):
JIANG Xiangang1LIU Weiming23*WEN Susong1WU Chaohua2
School of Civil Engineering, Sichuan Agricultural University, Dujiangyan 611830, Sichuan, China; 2. Key Laboratory of Mountain Hazards and Earth Surface Process, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China; 3. China-Pakistan Joint Research Center on Earth Sciences, CAS-HEC, Islamabad 45320, Pakistan
关键词:
古高能洪水 HEC-RAS模型 雅鲁藏布江
Keywords:
ancient high-energy flood HEC-RAS model the Yarlung Zangbo River
分类号:
TV122
DOI:
10.16089/j.cnki.1008-2786.000671
文献标志码:
A
摘要:
高能洪水是地球上目前已知最大规模的极端洪水事件,其对全球地貌演化、气候变化等有着深刻的影响。高能洪水重建可以提高对极端洪水事件的认识,进一步探索高山峡谷地貌对于极端洪水事件的响应。然而,针对高海拔山区的高能洪水模型应用仍存在一定局限,无法得到高准确度的重建结果。为了研究雅江中游高能洪水规模,本研究在雅鲁藏布江中游宽谷加查—米林河段发现的代表古高能洪水的17个砾石洲/滩的基础上,采用HEC-RAS模型,结合ArcGIS平台下的HEC-Georas模块重建了古高能洪水洪峰流量; 以±35%的变幅对曼宁糙率系数进行了敏感性测试,以保证重建结果的准确性。计算结果表明:(1)17个砾石洲/滩的模拟水位与野外调查所得标志水位能较好吻合,与实测结果相比误差均小于0.1%;(2)雅鲁藏布江中游古高能洪水洪峰水位为3047.09~3373.39 m,洪峰流量为0.2×106~1.8×106 m3/s,且最大淹没水深为366 m;(3)当曼宁系数处于±35%的变幅下时,洪峰水位的误差为-0.36%~0.17%,说明该模型对曼宁糙率系数的敏感性较差,采用此方法能够很好地恢复雅鲁藏布江中游古高能洪水洪峰流量。该研究对于充分认识雅鲁藏布江中游的洪水运动规律有重要作用,对于揭示高能洪水在高山峡谷区的特征及其地貌响应具有重要的现实意义。
Abstract:
High-energy floods are the largest extreme floods on earth and highly relevant to global landform evolution and climate change. The efforts to reconstruct high-energy flood occurrences can improve our understanding of historic extreme flood events and help us further investigate the responses of alpine and valley landforms to the strikes of extreme floods. Unfortunately, the research on the reconstruction of high-energy flood occurrences remains limited. There were less applicability of high-energy flood models to high-altitude mountainous areas, and high-accuracy reconstruction results were not available.In this study, high-energy floods occurred in the middle reaches of the Yarlung Zangbo River, China were reconstructed for estimation of their scales. HEC-RAS model was introduced and HEC-Georas module in ArcGIS platform was used to rebuild the peak flow of ancient high-energy floods based on current 17 gravel islands and shoals located in some wide valleys between the middle reaches of the Yarlung Zangbo River, which were believed to be relics or records of ancient High-energy floods events. Sensitivity tests were used to ensure the accuracy of reconstruction based on the Manning roughness coefficient with a variation of ±35%.Results conclude:(1)The simulated water levels of the 17 gravel islands and shoals were consistent with the marked water levels obtained from field surveys. The discrepancies with measured results were all less than 0.1%.(2)The peak flow was between 0.2×106~1.8×106 m3/s, and the maximum submerged water depth was 366 m.(3)When Manning coefficient was in the range of ±35%, the error range of the flood peak water level was between -0.36% and 0.17%, indicating that the model was less sensitive to the Manning roughness coefficient, indicated that the proposed method was appropriate to recover the peak flow of ancient high-energy floods in the middle reaches of the Brahmaputra. This research contributes to fully understanding the flood movement in the middle reaches of the Yarlung Zangbo River and has important practical significance for revealing the characteristics of high-energy floods in the alpine and canyon areas and their geomorphological responses.

参考文献/References:

[1] O'CONNOR J E, CLAGUE J J, WALDER J S, et al. 9.25 Outburst floods [J]. Treatise on Geomorphology, 2013, 9: 475-510. DOI: 10.1016/B978-0-12-374739-6.00251-7
[2] CARLING P A, BURR D M, JOHNSEN T F. A review of open-channel megaflood depositional landforms on Earth and Mars [J]. Megaflooding on Earth and Mars, 2009(3): 33-49. DOI: 10.1017/CBO9780511635632.003
[3] BAKER V R, CARLING P A. Global Late Quaternary megafloods [J]. Reference Module in Earth Systems and Environmental Sciences, 2020, 9: 511-527. DOI: 10.1016/B978-0-12-409548-9.12459-5
[4] CENDERELLI D A. Floods from natural and artificial dam failures [J]. Inland Flood Hazards Human Riparian and Aquatic Communities, 2000:73-103. DOI: 10.1017/CBO9780511529412.004
[5] BENITO G, SOPENA A, SANCHEZ-MOYA Y, et al. Palaeoflood record of the Tagus River(Central Spain)during the Late Pleistocene and Holocene [J]. Quaternary Science Reviews, 2003, 22(15-17): 1737-1756. DOI: 10.1016/S0277-3791(03)00133-1
[6] SHEFFER N A, RICO M, ENZEL Y, et al. The palaeoflood record of the Gardon River, France: A comparison with the extreme 2002 flood event [J]. Geomorphology, 2008, 98(1-2): 71-83. DOI: 10.1016/j.geomorph.2007.02.034
[7] BUTT M J, UMAR M, QAMAR R. Landslide dam and subsequent dam-break flood estimation using HEC-RAS model in northern Pakistan [J]. Natural Hazards, 2013, 65(1): 241-254. DOI: 10.1007/s11069-012-0361-8
[8] BAKER V R, BENITO G, RUDOY A N. Paleohydrology of Late Pleistocene superflooding, Altay Mountains, Siberia [J]. Science, 1993, 259(5093): 348-350. DOI: 10.1126/science.259.5093.348
[9] ALHO P, RUSSELL A J, CARRIVICK J L, et al. Reconstruction of the largest Holocene Jökulhlaup within Jokulsá á Fjöllum, NE Iceland [J]. Quaternary Science Reviews, 2005, 24:2319-2334. DOI: 10.1016/j.quascirev.2004.11.021
[10] 郭永强, 葛永刚, 陈晓清, 等. 高山峡谷区古洪水事件重建研究进展[J]. 地学前缘, 2021, 28(2): 168-180. [GUO Yongqiang, GE Yonggang, CHEN Xiaoqing, et al. Progress in the reconstruction of palaeoflood events in the mountain canyon valleys around the Tibetan Plateau [J]. Earth Science Frontiers, 2021, 28(2): 168-180] DOI: 10.13745/j.esf.sf.2020.9.13
[11] 魏海燕, 黄春长, 查小春, 等. 黄河中游晋陕峡谷段全新世晚期洪水滞流沉积研究[J]. 地质论评, 2010, 56(5): 745-752. [WEI Haiyan, HUANG Chunchang, ZHA Xiaochun, et al. Sedimentary studies of the Late Holocene food slackwater deposits in the Shanxi-Shaanxi Gorges, middle reach of the Yellow River [J]. Geological Review, 2010, 56(5): 745-752]
[12] 朱向锋, 黄春长, 庞奖励, 等. 渭河天水峡谷全新世特大洪水水文学研究[J]. 地理科学进展, 2010, 29(7): 840-846. [ZHU Xiangfeng, HUANG Chunchang, PANG Jiangli, et al. Palaeo-Hydrologrcal studies of the Holocene extreme floods in the Tianshui Gorges of the Weihe River [J]. Progress in Geography, 2010, 29(7): 840-846] DOI: 10.11820/dlkxjz.2010.07.010
[13] 李晓刚, 黄春长, 庞奖励, 等. 黄河壶口段全新世古洪水事件及其水文学研究[J]. 地理学报, 2010, 65(11): 1371-1380. [LI Xiaogang, HUANG Chunchang, PANG Jiangli, et al. Hydrological studies of the Holocene palaeoflood in the Hukou Reach of the Yellow River [J]. Acta Geographica Sinica, 2010,65(11): 1371-1380]
[14] 刘涛, 黄春长, 庞奖励,等. 汉江上游郧县五峰段史前大洪水水文学恢复研究[J]. 地理学报, 2013, 68(11): 1568-1577. [LIU Tao, HUANG Chunchang, PANG Jiangli, et al. Hydrological reconstructions of the pre-historical great floods in the Wufeng Reach of Yunxian county in the upper Hanjiang River [J]. Acta Geographica Sinica, 2013, 68(11): 1568-1577] DOI: 10.11821/dlxb201311012
[15] CUO Lan, LI Ning, LIU Zhe, et al. Warming and human activities induced changes in the Yarlung Tsangpo basin of the Tibetan plateau and their influences on streamflow [J]. Journal of Hydrology: Regional Studies, 2019, 25: 100625. DOI: 10.1016/j.ejrh.2019.100625
[16] MANDAL A K, LI X, SHRESTHA R. Influence of water level rise on the bank of reservoir on slope stability: A case study of Dagangshan hydropower project [J]. Geotechnical and Geological Engineering, 2019, 37(2): 1-12. DOI: 10.1007/s10706-019-00972-4
[17] 方园皓, 张行南, 夏达忠. HEC-RAS系列模型在洪水演进模拟中的应用研究[J]. 三峡大学学报(自然科学版), 2011, 33(2): 12-15. [FANG Yuanhao, ZHANG Xingnan, XIA Dazhong. Research on application of series of HEC-RAS model to flood routing simulation [J]. Journal of China Three Gorges University(Natural Sciences), 2011, 33(2): 12-15] DOI: 10.3969/j.issn.1672-948X.2011.02.004
[18] KARAMOUZ M, ZAHMATKESH Z, GOHARIAN E, et al. Coastal floodplain mapping and evaluation using GIS and HEC-Georas models [G]// HUBER W C. Proceedings of the World Environmental and Water Resources Congress. Colorado: American Society of Civil Engineers, 2014:876-886. DOI: 10.1061/9780784413548.091
[19] SHARMA P, MUJUMDAR S. Dam break analysis using HEC-RAS and HEC-Georas: A case study of Ajwa Reservoir [J]. Journal of Water Resources and Ocean Science, 2017, 5(6): 108-113. DOI: 10.11648/j.wros.20160506.15
[20] BAKER V R. Palaeoflood hydrology in a global context [J]. Catena, 2006, 66(1-2): 161-168. DOI: 10.1016/j.catena.2005.11.016
[21] KOCHEL R C, BAKER V R. Paleoflood hydrology [J]. Science, 1982, 215(4531): 353-361. DOI: 10.1126/science.215.4531.353
[22] 吉琳, 庞奖励, 黄春长,等. 汉江上游晏家棚段全新世古洪水研究[J]. 地球科学进展, 2015, 30(4): 487-494. [JI Lin, PANG Jiangli, HUANG Chunchang, et al. Holocene palaeoflood studies of the Yanjiapeng Reach in the upper Hanjiang River, China [J]. Advances in Earth Science, 2015,30(4): 487-494] DOI: 10.1167/j.issn.1001-8166.2015.04.0487
[23] 黄春长, 李晓刚, 庞奖励, 等. 黄河永和关段全新世古洪水研究[J]. 地理学报, 2012, 67(11): 1493-1504. [HUANG Chunchang, LI Xiaogang, PANG Jiangli, et al. Palaeoflood sedimentological and hydrological studies on the Yongheguan Reach in the middle Yellow River [J]. Acta Geographica Sinica, 2012, 67(11):1493-1504]
[24] YANG Dayuan, YU Ge, XIE Yuebo, et al. Sedimentary records of large Holocene floods from the middle reaches of the Yellow River, China [J]. Geomorphology, 2000, 33(1): 73-88. DOI: 10.1016/s0169-555x(99)00111-7
[25] HUANG Chunchang, JIA Yaofeng, PANG Jiangli, et al. Holocene colluviation and its implications for tracing human-induced soil erosion and redeposition on the piedmont loess lands of the Qinling Mountains, northern China [J]. Geoderma, 2006, 136(3): 838-851. DOI: 10.1016/j.geoderma.2006.06.006
[26] 詹道江, 谢悦波. 洪水计算的新进展——古洪水研究[J]. 水文, 1997, 1(1): 1-6. [ZHAN Daojiang, XIE Yuebo. New advance in flood calculation—paleoflood study [J]. Journal of China Hydrology, 1997, 1(1): 1-6] DOI: 10.19797/j.cnki.1000-0852.1997.01.001
[27] 武汉大学水利电力学院水力学教研室. 水力计算手册[M]. 北京: 中国水利水电出版社, 1980:44-45. [Department of Hydraulics, School of Water Resources and Electric Power, Wuhan University. Hydraulic calculation manual [M]. Beijing: China Water and Power Press, 1980: 44-45]
[28] BRUNNER G W. HEC-RAS river analysis system(Hydraulic reference manual)[M]. Davis: Hydrologic Engineering Center, US Army Corps of Engineers. 1995:4-12.
[29] 佟延辉, 赵同银, 李秋月. 比降—面积法应用问题探讨[J]. 黑龙江水利科技, 2006, 34(5): 28-28. [TONG Yanhui, ZHAO Tongyin, LI Qiuyue. Discussion on application of gradation-area method [J]. Heilongjiang Science and Technology of Water Conservancy, 2006, 34(5): 28-28] DOI: 10.3969/j.issn.1007-7596.2006.05.014
[30] 刘涛. 河流古洪水水文学重建的多种方法比较研究[D]. 西安: 陕西师范大学, 2015: 59-62 [LIU Tao. Comparative study of hydrological reconstructions of paleoflood: Case studies of bedrock gorge reach in the middle Yellow River Basin and upper Hanjiang River Basin [D]. Xi'an: Shanxi Normal University, 2015: 59-62]
[31] WEBB R H, JARRETT R D. One-dimensional estimation techniques for discharges of paleofloods and historical floods [G]//American Geophysical Union. Ancient floods, modern hazards: Principles and applications of paleoflood hydrology water science and application volume 5. Washington: American Geophysical Union. 2013: 111-125. DOI: 10.1029/WS005p0111
[32] BOHORQUEZ P, JIMENEZ-RUIZ P J, CARLING P A. Revisiting the dynamics of catastrophic late Pleistocene glacial-lake drainage, Altai Mountains, central Asia [J]. Earth-Science Reviews, 2019, 197: 102892. DOI: 10.1016/j.earscirev.2019.102892
[33] LARSEN I J, LAMB M P. Progressive incision of the channeled scablands by outburst floods [J]. Nature, 2016, 538(7624): 229-232. DOI: 10.1038/nature19817
[34] AGATOVA A R, NEPOP R K, CARLING P A, et al. Last ice-dammed lake in the Kuray basin, Russian Altai: New results from multidisciplinary research [J]. Earth-Science Reviews, 2020, 205: 103183. DOI: 10.1016/j.earscirev.2020.103183
[35] GREENBAUM N, SCHICK A P, BAKER V R. The palaeoflood record of a hyperarid catchment, Nahal Zin, Negev Desert, Israel [J]. Earth Surface Processes and Landforms, 2000, 25(9): 951-971.
[36] DODET G, LECKLER F, SOUS D, et al. Wave runup over steep rocky cliffs [J]. Journal of Geophysical Research: Oceans, 2018, 123(10): 3-15. DOI: 10.1029/2018JC013967
[37] CARLING P A, BORHORQUEZ P, FAN X M. Hydraulic control on the development of megaflood runup deposits [J]. Geomorphology, 2020, 361: 107203. DOI: 10.1016/j.geomorph.2020.107203
[38] BAKER V R. Paleoflood hydrology of extraordinary flood events [J]. Journal of Hydrology, 1987, 96(1-4): 79-99. DOI: 10.1016/0022-1694(87)90145-4
[39] TAKEUCHI R, CHIANG A H, KUROKAWA H, et al. Roughness characteristics of natural channels [J]. Journal of Hydrology, 1969, 7(2): 354.
[40] 杨克君, 曹叔尤, 刘兴年. 复式河槽综合糙率计算方法比较与分析[J]. 水利学报, 2005, 36(7): 780-786. [YANG Kejun, CAO Shuyou, LIU Xingnian. Analysis on methods for predicting composite roughness of river channel with compound cross section [J]. Shuili Xuebao, 2005, 36(7): 780-786] DOI: 10.13243/j.cnki.slxb.2005.07.003

备注/Memo

备注/Memo:
收稿日期(Received date):2021-04-16; 改回日期(Accepted date): 2022-03-29
基金项目(Foundation item):国家自然科学基金(42071017); 国家自然科学基金重大研究计划(91747207); 国家自然科学基金(41807289); 中国科学院山地灾害与地表过程重点实验室开放基金(KLMHESP-20-05)。[National Natural Science Foundation of China(42071017); Key Projects of the National Natural Science Foundation of China(91747207); National Natural Science Foundation of China(41807289); Open Fund of Key Laboratory of Mountain Hazards and Surface Processes, Chinese Academy of Sciences(KLMHESP-20-05)]
作者简介(Biography):蒋先刚(1987-),男,山东梁山人,博士,副教授,主要研究方向:山地灾害机制及防治。[JIANG Xiangang(1987-), male, born in Liangshan, Shandong province, Ph.D., associate professor, research on the mechanism and prevention of mountain disasters] E-mail: jxgjim@163.com
*通讯作者(Corresponding author):刘维明(1982-),男,博士,研究员,主要研究方向:古灾害地貌。[LIU Weiming(1982-), male, Ph.D., professor, research on paleo-hazard geomorphology] E-mail: liuwm@imde.ac.cn
更新日期/Last Update: 2022-03-30