[1]胡旭东ab,沈已桐c,胡凯衡,等.震区泥石流物源与冲出量的关系——以四川汶川县簇头沟为例[J].山地学报,2022,(3):369-383.[doi:10.16089/j.cnki.1008-2786.000678]
 HU Xudongab,SHEN Yitongc,HU Kaiheng,et al.Relationship Between Debris Flow Sediments and Amount of Debris Flow Discharges in Earthquake Affected Region: A Case Study of the Cutougou Valley in Wenchuan County, Sichuan Province, China[J].Mountain Research,2022,(3):369-383.[doi:10.16089/j.cnki.1008-2786.000678]
点击复制

震区泥石流物源与冲出量的关系——以四川汶川县簇头沟为例
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第3期
页码:
369-383
栏目:
山地灾害
出版日期:
2022-05-25

文章信息/Info

Title:
Relationship Between Debris Flow Sediments and Amount of Debris Flow Discharges in Earthquake Affected Region: A Case Study of the Cutougou Valley in Wenchuan County, Sichuan Province, China
文章编号:
1008-2786-(2022)3-369-15
作者:
胡旭东1a1b沈已桐1c胡凯衡2张晓鹏2许文年1a1b
1. 三峡大学 a.三峡库区地质灾害教育部重点实验室; b.土木与建筑学院; c. 水利与环境学院,湖北 宜昌 443002; 2. 中国科学院、水利部成都山地灾害与环境研究所,成都 610041
Author(s):
HU Xudong1a1b SHEN Yitong1c HU Kaiheng2 ZHANG Xiaopeng2 XU Wennian1a1b
1. a. Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University), Ministry of Education; b. College of Civil Engineering and Architecture; c. College of Hydraulic and Environment Engineering; China Three Gorges University, Yichang 443002, Hubei, China; 2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Conservancy, Chengdu 610041, China
关键词:
泥石流 物源 动态变化 泥石流冲出量 地震 遥感解译 汶川 簇头沟
Keywords:
debris flow sediment dynamic variation the amount of debris flow discharges earthquake remote sensing interpretation the Cutougou valley Wenchuan county
分类号:
P954
DOI:
10.16089/j.cnki.1008-2786.000678
文献标志码:
A
摘要:
汶川地震诱发的崩滑体不断地动态演变,为泥石流提供了丰富的松散固体物源,造成震后数年间暴发多次群发性泥石流灾害。分析震区崩滑体(物源)时空上的变化以及与泥石流规模(冲出量)大小的关系,可为震后灾害链的长期效应和防灾减灾提供科学依据。目前,冲出量多基于单次泥石流或多次泥石流后形成的堆积物进行估算,利用遥感技术结合现场踏勘来确定泥石流冲出物的相关研究不多。本文选取汶川震区簇头沟流域为研究对象,通过野外调查、遥感解译和冲出量计算模型构建相结合的方法,分析流域内物源动态演变特征,探究沟道内崩滑体物源量变化与簇头沟多次泥石流冲出量的关系。结果表明:(1)簇头沟下游支沟物源量在2013年泥石流后不断减少,而上游支沟内物源量自2019年泥石流后增加显著;(2)三次泥石流的物源量与冲出量呈现一定的线性关系,而总冲出量相对于流域内总物源量的占比不足5%,仍有大量物源堆积于沟道内;(3)主沟道拦沙坝的拦蓄能力逐年下降,需继续加强清淤力度,且上部沟道和支沟亦应增加相应的防治措施。本研究有助于认识震区崩滑体演变特征及其对震后泥石流的影响,并为优化泥石流灾害防治工程选址提供理论指导。
Abstract:
Massive landslide mass(sediments)generated by the Wenchuan Earthquake are constantly evolving dynamically, typically for years providing a rich source of loose geo-materials for debris flow motivation, resulting in group-occurring of post-shock debris flows. It is quite necessary in science to analyze the temporal and spatial patterns of these landslide mass(sediment)in the post-shock areas and determine their geophysical association with debris flow scale(the amount of debris flow discharges), undoubtedly by which it can provide scientific basis for evaluation of long-term effects of post-quake geohazard chain, as well as for policymaking of post-shock geohazard control. Research on calculation of the amount of debris flow discharges was mostly estimated based on the accumulation formed by a single debris flow or multiple debris flows; there was still a lack of research using remote sensing technology and field survey to determine it. In this study, the Cutougou valley lied in the quake-hit area was selected as research target. Research approaches, including field investigation, remote sensing interpretation and improved numerical calculation were combined to investigate the dynamic variation of the landslide mass conformation in the valley, and the association between the change of sediment storages in the gully with multiple debris flow discharges. Following facts are obtained:(1)The storage of landslide mass in lower branch of the Cutougou valley had decreased after debris flow events in 2013 while in the upper branch there were noticeable increments in sediments after debris flow events in 2019.(2)There was a certain linear relationship between the storage of landslide mass and debris flow discharges; and the total amount of debris flow discharges accounted for less than 5% of the total storage of landslide mass, still abundant sediments to be remained in the gully.(3)The retaining capacity of check dam decreased year by year, so it is necessary to dredge the dam continually; and consequent prevention and control measures are expected to be added to the upper branch of the valley. This study is beneficial to knowledge updating on the evolution characteristics of landslide sediments in quake-hit areas and its influence on post-shock debris flow risk, and it provides theoretical guidance for optimizing site selection of debris flow disaster prevention project.

参考文献/References:

[1] 康志成,李焯芬,马蔼乃,等.中国泥石流研究[M].北京:科学出版社,2004:3-5. [KANG Zhicheng, LEE Chackfan, MA Ainai, et al. Study on debris flow in China [M]. Beijing: Science Press, 2004: 3-5]
[2] 崔鹏,邓宏艳,王成华. 山地灾害[M]. 北京:科学出版社,2018:4-5. [CUI Peng, DENG Hongyan, WANG Chenghua. Mountain disaster [M]. Beijing: Science Press, 2018: 4-5]
[3] HU Xudong, HU Kaiheng, TANG Jinbo, et al. Assessment of debris-flow potential dangers in the Jiuzhaigou valley following the August 8, 2017, Jiuzhaigou earthquake, western China [J]. Engineering Geology, 2019, 256: 57-66. DOI: 10.1016/j.enggeo.2019.05.004
[4] 胡凯衡,陈成,李秀珍,等. 地震区降雨作用下泥石流易发性动态评估[J]. 中国地质灾害与防治学报,2018,29(2):1-8. [HU Kaiheng, CHEN Cheng, LI Xiuzhen, et al. Dynamic assessment of debris-flow susceptibility under the influence of earthquake and rainfall events [J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2): 1-8] DOI: 10.16031/j.cnki.issn.1003-8035.2018.02.01
[5] 李明威,唐川,陈明,等. 汶川震区北川县泥石流流域崩滑体时空演变特征[J]. 水文地质工程地质,2020,47(3):182-190. [LI Mingwei, TANG Chuan, CHEN Ming, et al. Spatio-temporal evolution characteristics of landslides in debris flow catchment in Beichuan county in the Wenchuan earthquake zone [J]. Hydrogeology and Engineering Geology, 2020, 47(3): 182-190] DOI: 10.16030/j.cnki.issn.1000-3665.201909006
[6] 冯文凯,何山玉,刘志刚,等. 平武县兴坪沟泥石流特性及其工程防治效果分析[J]. 工程地质学报,2017,25(3):794-805. [FENG Wenkai, HE Shanyu, LIU Zhigang, et al. Features of debris flows and their engineering control effects at Xinping gully of Pingwu county [J]. Journal of Engineering Geology, 2017, 25(3): 794-805] DOI: 10.13544/j.cnki.jeg.2017.03.027
[7] FAN Xuanmei, SCARINGI G, KORUP O, et al. Earthquake-induced chains of geologic hazards: Patterns, mechanisms, and impacts [J]. Reviews of Geophysics, 2019, 57(2): 421-503. DOI: 10.1029/2018RG000626
[8] DOMENECH G, FAN Xuanmei, SCARINGI G, et al. Modelling the role of material depletion, grain coarsening and revegetation in debris flow occurrences after the 2008 Wenchuan earthquake [J]. Engineering Geology, 2019, 250(21): 34-44. DOI: 10.1016/j.enggeo.2019.01.010
[9] 潘华利,安笑,邓其娟,等. 泥石流松散固体物源研究进展与展望[J]. 科学技术与工程, 2020,20(24):9733-9741. [PAN Huali, AN Xiao, DENG Qijuan, et al. Progress and prospects of research on debris flow solid source [J]. Science Technology and Engineering, 2020, 20(24): 9733-9741] DOI: 10.3969/j.issn.1671-1815.2020.24.007
[10] 徐瑞池, 李秀珍,胡凯衡,等. 横断山区山地灾害的动态危险性评价[J]. 灾害学,2019,34(3):196-201+208. [XU Ruichi, LI Xiuzhen, HU Kaiheng, et al. A dynamic hazard assessment for mountain hazards in Hengduan mountain area [J]. Journal of Catastrophology, 2019, 34(3): 196-201+208] DOI: 10.3969/j.issn.1000-811X. 2019.03.036
[11] 蒋志林,朱静,常鸣,等. 汶川地震区红椿沟泥石流形成物源量动态演化特征[J]. 山地学报,2014,32(1):81-88. [JIANG Zhilin, ZHU Jing, CHANG Ming, et al. Dynamic evolution characteristics of Hongchun gully source area of debris flow in Wenchuan earthquake region [J]. Mountain Research, 2014, 32(1): 81-88] DOI: 10.16089/j.cnki.1008-2786.2014.01.011
[12] 李惠. 沟谷型泥石流演化及动力学数值模拟研究[D]. 成都:成都理工大学,2020:12-14. [LI Hui. A Study of evolutionary and dynamic numerical simulation for gully-shaped debris flow [D]. Chengdu: Chengdu University of Technology, 2020:12-14] DOI: 10.26986/d.cnki.gcdlc.2020.001158
[13] 熊江,唐川,龚凌枫,等. 基于GIS的强震区泥石流流域崩滑物源演化强度评价[J]. 地理与地理信息科学,2020,36(1): 58-64. [XIONG Jiang, TANG Chuan, GONG Lingfeng, et al. Evaluation of evolution intensity of slump-mass sources in debris flow basin in strong earthquake area based on GIS [J]. Geography and Geo-Information Science, 2020, 36(1): 58-64] DOI: 10.3969/j.issn.1672-0504.2020.01.009
[14] TANG Chuan, ZHU Jing, DING Jun, et al. Catastrophic debris flows triggered by a 14 August 2010 rainfall at the epicenter of the Wenchuan earthquake [J]. Landslides, 2011, 8(4): 485-497. DOI: 10.1007/s10346-011-0269-5
[15] 丁军. 强震区泥石流活动规模与最大堆积长度预测研究[D].成都: 成都理工大学,2011:51-52. [DING Jun. Research on magnitude and runout distance of debris-flows in strong earthquake area [D]. Chengdu: Chengdu University of Technology,2011: 51-52]
[16] HURLIMANN M, COPONS R, ALTIMIR J, et al. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach[J]. Geomorphology, 2006, 78(3): 359-372.DOI: 10.1007/s10346-011-0269-510.1016/j.geomorph.2006.02.003
[17] GARTNER J E, CANNON S H, SANTI P M, et al. Empirical models to predict the volumes of debris flows generated by recently burned basins in the western U. S. [J]. Geomorphology, 2008, 96(3): 339-354. DOI: 10.1016/j.geomorph.2007.02.033
[18] 李彦稷,胡凯衡. 基于扇形地形态特征的泥石流危险评估[J]. 山地学报,2017,35(1): 32-38. [LI Yanji, HU Kaiheng. Risk assessment based on morphological characteristics of debris flow alluvial fan [J]. Mountain Research, 2017, 35(1): 32-38] DOI: 10.16089/j.cnki.1008-2786.000193
[19] 常鸣,唐川,夏添,等. 强震区泥石流堆积物的演化特征与方量估算模型[J]. 水利学报,2012,43(S2):117-121. [CHANG Ming, TANG Chuan, XIA Tian, et al. Debris flow deposits model and accumulation evolution in seismic area [J]. Journal of Hydraulic Engineering, 2012, 43(S2): 117-121] DOI: 10.13243/j.cnki.slxb.2012.s2.008
[20] 许强. 汶川大地震诱发地质灾害主要类型与特征研究[J]. 地质灾害与环境保护,2009,20(2):86-93. [XU Qiang. Main types and characteristics of the geo-hazards triggered by the Wenchuan earthquake [J]. Journal of Geological Hazards and Environment Preservation, 2009, 20(2): 86-93]
[21] 严炎,葛永刚,张建强,等. 四川省汶川县簇头沟“7.10”泥石流灾害成因与特征分析[J]. 灾害学,2014,29(3):229-234. [YAN Yan, GE Yonggang, ZHANG Jianqiang, et al. Research on the debris flow hazards in Cutou gully, Wenchuan county on July 10, 2013 [J]. Journal of Catastrophology, 2014, 29(3): 229-234] DOI: 10.3969/j.issn.1000-811X.2014.03.042
[22] 陈俊淇. 强震区泥石流物源侵蚀运移特征分析——以汶川县棉虒镇锄头沟为例[D]. 长春: 吉林大学,2020:7-10. [CHEN Junqi. Analysis of material source erosion and migration characteristics of debris flows in strong earthquake areas: A case study of Chutou gully, Wenchuan, Sichuan [D]. Changchun: Jilin University, 2020: 7-10] DOI: 10.27162/d.cnki.gjlin.2020.006318
[23] FAN Xuanmei, SCARINGI G, DOMENECH G, et al. Two multi-temporal datasets that track the enhanced landsliding after the 2008 Wenchuan earthquake [J]. Earth System Science Data, 2019, 11(1): 35-55. DOI: 10.5194/essd-11-35-2019
[24] FAN Jianrong, LI Xiuzhen, GUO Fenfen. Empirical-statistical models based on remote sensing for estimating the volume of landslides induced by the Wenchuan earthquake [J]. Journal of Mountain Science, 2011,8(5): 711-717. DOI: 10.1007/s11629-011-2133-4
[25] GUZZETTI F, ARDIZZONE F, CARDINALI M, et al. Landslide volumes and landslide mobilization rates in Umbria, central Italy [J]. Earth and Planetary Science Letters, 2009, 279(3-4): 222-229. DOI: 10.1016/j.epsl.2009.01.005
[26] LARSEN I J, MONTGOMERY D R, KORUP O. Landslide erosion controlled by hillslope material [J]. Nature Geoscience, 2010, 3(4): 247-251. DOI: 10.1038/NGEO776
[27] 蒋志林. 基于RS的震区泥石流物源演化特征分析——以四川省汶川县映秀地区为例[D]. 成都: 成都理工大学,2014:35-36. [JIANG Zhilin. Research on the materials evolution characteristics of debris flows based on RS in earthquake area-case study in Yingxiu area of Wenchuan in Sichuan province [D]. Chengdu: Chengdu University of Technology, 2004: 35-36]
[28] 方群生,唐川,程霄,等. 汶川震区泥石流流域内滑坡物源量计算方法探讨[J]. 水利学报,2015,46(11):1298-1304. [FANG Qunsheng, TANG Chuan, CHENG Xiao, et al. An calculation method for predicting landslides volumes of the debris flows in the Wenchuan earthquake area [J]. Journal of Hydraulic Engineering, 2015, 46(11): 1298-1304] DOI: 10.13243/j.cnki.slxb.20150352
[29] 李宁,唐川,史青云,等. 九寨沟震区“6.21”泥石流成因与致灾机制研究[J/OL]. 工程地质学报,2021:1-10 [LI Ning, TANG Chuan, SHI Qingyun, et al. Investigation and analysis of “6.21” debris flow in Jiuzhaigou county, Sichuan province [J/OL]. Journal of Engineering Geology, 2021: 1-10] DOI: 10.13544/j.cnki.jeg.2019-509
[30] 周明慧,熊海贝,赵书平,等. 泥石流冲击力简化计算方法——以舟曲县三眼峪泥石流为例[J]. 山地学报, 2017, 35(2): 187-194. [ZHOU Minghui, XIONG Haibei, ZHAO Shuping, et al. Simplified calculation of impact force of debris flow based on the case study of Sanyan valley debris flow [J]. Mountain Research, 2017, 35(2): 187-194] DOI: 10.16089/j.cnki.1008-2786.000211
[31] CHEN Ming, TANG Chuan, ZHANG Xianzheng, et al. Quantitative assessment of physical fragility of buildings to the debris flow on 20 August 2019 in the Cutou gully, Wenchuan, southwestern China [J]. Engineering Geology, 2021,293(3):106319. DOI: 10.1016/j.enggeo.2021.106319
[32] 丰强, 唐川, 陈明, 等. 汶川震区绵虒镇"8·20"登溪沟泥石流灾害调查与分析[J]. 防灾减灾工程学报,2022,42(1):51-59. [FENG Qiang, TANG Chuan, CHEN Ming, et al. Field investigation and research on debris flow on August 20,2019 in Mianshi town,epicenter of Wenchuan earthquake [J]. Journal of Disaster Prevention and Mitigation Engineering, 2022, 42(1): 51-59] DOI: 10.13409/j.cnki.jdpme.20210220002
[33] 甘凤玲, 何丙辉, 王涛. 人工模拟降雨下汶川震区滑坡堆积体产沙规律[J]. 农业工程学报, 2016, 32(12): 158-164. [GAN Fengling, HE Binghui, WANG Tao. Sediment characteristic of landslide accumulation body in earthquake zone of Wenchuan under artificial rainfall simulation condition [J]. Transactions of the Chinese Society of Agricultural Engineering,2016, 32(12): 158-164] DOI: 10.11975/j.issn.1002-6819.2016.12.023
[34] 曾凤铃, 刘淑婧, 运剑苇, 等. 模拟降雨条件下三峡库区紫色土坡地产流入渗特征[J]. 中国水土保持科学, 2022,20(1):107-113. [ZENG Fengling, LIU Shujing, YUN Jianwei, et al. Runoff and infiltration characteristics of purple soil slope in the Three Gorges Reservoir region under simulated rainfall [J]. Science of Soil and Water Conservation, 2022, 20(1): 107-113] DOI: 10.16843/j.sswc.2022.01.014
[35] 张友谊, 钟磊, 樊晓一, 等. 岷江河谷锄头沟震后泥石流致灾模式[J].山地学报, 2021,39(5):756-766. [ZHANG Youyi, ZHONG Lei, FAN Xiaoyi, et al. The disaster model of debris flows after earthquake at Chutou gully of Minjiang river valley,China [J]. Mountain Research, 2021, 39(5): 756-766] DOI: 10.16089/j.cnki.1008-2786.000636

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(3):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(3):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(3):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(3):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(3):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(3):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(3):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(3):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(3):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(3):495.

备注/Memo

备注/Memo:
收稿日期(Received date):2021-09-15; 改回日期(Accepted date): 2022-04-29
基金项目(Foundation item):国家自然科学基金(42001002); 中国科学院山地灾害与地表过程重点实验室开放基金(KLMHESP-20-02); 长江科学院开放研究基金(CKWV2021888/KY); 湖北省教育厅科学技术研究计划重点项目(D20201205)[National Natural Science Foundation of China(42001002); Open Found of Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciences(KLMHESP-2002); CRSRI Open Research Program(CKWV2021888/KY), Major Projects of Science and Technology Research Plan of Hubei Provincial Department of Education(D20201205)]
作者简介(Biography):胡旭东(1991-),男,博士,讲师,主要研究方向:地质灾害减灾理论与技术[HU Xudong(1991-),male, Ph.D., lecturer, research on theory and technology of geological disaster reduction] E-mail: hxd@ctgu.edu.cn
更新日期/Last Update: 2022-06-30