参考文献/References:
[1] 张俊,殷坤龙,王佳佳,等. 三峡库区万州区滑坡灾害易发性评价研究[J]. 岩石力学与工程学报,2016,35(2):284-296. [ZHANG Jun, YIN Kunlong, WANG Jiajia, et al. Evaluation of landslide susceptibility for Wanzhou district of Three Gorges Reservoir [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2):284-296] DOI: 10.13722/j.cnki.jrme.2015.0318
[2] MERGHADI A, YUNUS A P, DOU Jie, et al. Machine learning methods for landslide susceptibility studies: A comparative overview of algorithm performance [J]. Earth-Science Reviews, 2020, 207:103225. DOI: 10.1016/j.earscirev.2020.103225
[3] 郑师谊,张绪教,杨艳,等. 层次分析法在滇西怒江河谷潞江盆地段崩塌与滑坡地质灾害危险性评价中的应用[J]. 地质通报,2012,31(2/3):356-365. [ZHENG Shiyi, ZHANG Xujiao, YANG Yan, et al. The application of analytic hierarchy process to the danger evaluation of collapse and slide in Lujiang basin segment of Nujiang valley, western Yunnan province [J]. Geological Bulletin of China, 2012, 31(2/3):356-365]
[4] 张玘恺,凌斯祥,李晓宁,等. 九寨沟县滑坡灾害易发性快速评估模型对比研究[J]. 岩石力学与工程学报,2020,39(8):1595-1610. [ZHANG Qikai, LING Sixiang, LI Xiaoning, et al. Comparison of landslide susceptibility mapping rapid assessment models in Jiuzhaigou county, Sichuan province, China [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(8):1595-1610] DOI: 10.13722/j.cnki.jrme.2020.0029
[5] 管家琳,黄炎和,林金石,等. 基于信息量模型与随机森林模型的崩岗风险对比评估[J]. 山地学报,2021,39(4):539-551. [GUAN Jialin, HUANG Yanhe, LIN Jinshi, et al. Comparisons between Benggang risk assessments based on information model and random forest model [J]. Mountain Research, 2021, 39(4):539-551] DOI: 10.16089/j.cnki.1008-2786.000618
[6] 李文彦,王喜乐. 频率比与信息量模型在黄土沟壑区滑坡易发性评价中的应用与比较[J]. 自然灾害学报,2020,29(4):213-220. [LI Wenyan, WANG Xile. Application and comparison of frequency ratio and information value model for evaluating landslide susceptibility of loess gully region [J]. Journal of Natural Disasters, 2020, 29(4):213-220] DOI: 10.13577/j.jnd.2020.0422
[7] 黄发明,殷坤龙,蒋水华,等. 基于聚类分析和支持向量机的滑坡易发性评价[J]. 岩石力学与工程学报,2018,37(1):156-167. [HUANG Faming, YIN Kunlong, JIANG Shuihua, et al. Landslide susceptibility assessment based on clustering analysis and support vector machine [J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(1):156-167] DOI: 10.13722/j.cnki.jrme.2017.0824
[8] 田乃满,兰恒星,伍宇明,等. 人工神经网络和决策树模型在滑坡易发性分析中的性能对比[J]. 地球信息科学学报,2020,22(12):2304-2316. [TIAN Naiman, LAN Hengxing, WU Yuming, et al. Performance comparison of BP artificial neural network and CART decision tree model in landslide susceptibility prediction [J]. Journal of Geo-information Science, 2020, 22(12):2304-2316] DOI: 10.12082/dqxxkx.2020.190766
[9] 吴润泽,胡旭东,梅红波,等. 基于随机森林的滑坡空间易发性评价:以三峡库区湖北段为例[J]. 地球科学,2021,46(1):321-330. [WU Runze, HU Xudong, MEI Hongbo, et al. Spatial susceptibility assessment of landslides based on random forest: A case study from Hubei section in the Three Gorges Reservoir area [J]. Earth Science, 2021, 46(1):321-330] DOI: 10.3799/dqkx.2020.032
[10] 陈飞,蔡超,李小双,等. 基于信息量与神经网络模型的滑坡易发性评价[J]. 岩石力学与工程学报,2020,39(S1):2859-2870. [CHEN Fei, CAI Chao, LI Xiaoshuang, et al. Evaluation of landslide susceptibility based on information volume and neural network model [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(S1):2859-2870] DOI: 10.13722/j.cnki.jrme.2019.1094
[11] 薛强,张茂省,李林. 基于斜坡单元与信息量法结合的宝塔区黄土滑坡易发性评价[J].地质通报,2015,34(11):2108-2115. [XUE Qiang, ZHANG Maosheng, LI Lin. Loess landslide susceptibility evaluation based on slope unit and information value method in Baota district, Yan'an [J]. Geological Bulletin of China, 2015, 34(11):2108-2115]
[12] 唐川,马国超. 基于地貌单元的小区域地质灾害易发性分区方法研究[J]. 地理科学,2015,35(1):91-98. [TANG Chuan, MA Guochao. Small regional geohazards susceptibility mapping based on geomorphic unit [J]. Scientia Geographica Sinica, 2015, 35(1):91-98] DOI: 10.13249/j.cnki.sgs.2015.01.011
[13] 王凯,张少杰,韦方强. 斜坡单元提取方法研究进展和展望[J]. 长江科学院院报,2020,37(6):85-93. [WANG Kai, ZHANG Shaojie, WEI Fangqiang. Advances and prospects in the slope unit extraction method [J]. Journal of Yangtze River Scientific Research Institute, 2020, 37(6):85-93] DOI: 10.11988/ckyyb.20190210
[14] ZHAO Yu, WANG Rui, JIANG Yuanjun, et al. GIS-based logistic regression for rainfall-induced landslide susceptibility mapping under different grid sizes in Yueqing, southeastern China [J]. Engineering Geology, 2019, 259:105147. DOI: 10.1016/j.enggeo.2019.105147
[15] SCHLOGEL R, MARCHESINI I, ALVIOLI M, et al. Optimizing landslide susceptibility zonation: Effects of DEM spatial resolution and slope unit delineation on logistic regression models [J]. Geomorphology, 2018, 301:10-20. DOI: 10.1016/j.geomorph.2017.10.018
[16] ALVIOLI M, MARCHESINI I, REICHENBACH P, et al. Automatic delineation of geomorphological slope units with r.slopeunits v1.0 and their optimization for landslide susceptibility modeling [J]. Geoscientific Model Development, 2016, 9(11):3975-3991. DOI: 10.5194/gmd-9-3975-2016
[17] HAKAN T, LUIGI L. Completeness index for earthquake-induced landslide inventories [J]. Engineering Geology, 2020, 264: 105331. DOI: 10.1016/j.enggeo.2019.105331
[18] 许强,董秀军,李为乐. 基于天-空-地一体化的重大地质灾害隐患早期识别与监测预警[J]. 武汉大学学报(信息科学版),2019,44(7):957-966. [XU Qiang, DONG Xiujun, LI Weile. Integrated space-air-ground early detection, monitoring and warning system for potential catastrophic geohazards [J]. Geomatics and Information Science of Wuhan University, 2019, 44(7):957-966] DOI: 10.13203/j.whugis20190088
[19] BREIMAN L. Random forests [J]. Machine Learning, 2001, 45(1):5-32. DOI: 10.1023/A:1010933404324
[20] CORTES C, VAPNIK V. Support-vector networks [J]. Machine Learning, 1995, 20(3):273-297. DOI: 10.1007/BF00994018
[21] ZHOU Xinzhi, WEN Haijia, ZHANG Yalan, et al. Landslide susceptibility mapping using hybrid random forest with GeoDetector and RFE for factor optimization [J]. Geoscience Frontiers, 2021, 12(5):101211. DOI: 10.1016/j.gsf.2021.101211
[22] 张建廷,张立民,徐涛. 遥感图像的异质性测度分割效果评价[J]. 测绘科学技术学报,2015,32(5):479-482+488. [ZHANG Jianting, ZHANG Limin, XU Tao. Heterogeneity measure based segmentation performance evaluation for remote sensing image [J]. Journal of Geomatics Science and Technology, 2015, 32(5):479-482+488] DOI: 10.3969/j.issn.1673-6338.2015.05.009
[23] 罗路广,裴向军,崔圣华,等. 九寨沟地震滑坡易发性评价因子组合选取研究[J]. 岩石力学与工程学报,2021,40(11):2306-2319. [LUO Luguang, PEI Xiangjun, CUI Shenghua, et al. Combined selection of causative factors for Jiuzhaigou earthquake-induced landslide susceptibility assessment [J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11):2306-2319] DOI: 10.13722/j.cnki.jrme.2021.0198
[24] DOU J, YUNUS A P, TIEN B D, et al. Assessment of advanced random forest and decision tree algorithms for modeling rainfall-induced landslide susceptibility in the Izu-Oshima Volcanic Island, Japan [J]. Science of The Total Environment, 2019, 662:332-346. DOI: 10.1016/j.scitotenv.2019.01.221
[25] 中华人民共和国国家质量监督检验检疫总局和中国国家标准化管理委员会. 中国地震动参数区划图:GB 18306-2015[S]. 北京:中国标准出版社,2015-05-15. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China and Standardization Administration of China. Seismic ground motion parameters zonation map of China: GB 18306-2015[S]. Beijing: Standards Press of China, 2015-05-15]
[26] 王劲峰,徐成东. 地理探测器:原理与展望[J]. 地理学报,2017,72(1):116-134. [WANG Jinfeng, XU Chengdong. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1):116-134] DOI: 10.11821/dlxb201701010
[27] 罗路广,裴向军,黄润秋. 强震山区地震滑坡发生概率研究—以九寨沟国家地质公园为例[J]. 岩石力学与工程学报,2020,39(10):2079-2093. [LUO Luguang, PEI Xiangjun, HUANG Runqiu. Earthquake-triggered landslide occurrence probability in strong seismically mountainous area: A case study of Jiuzhaigou National Geopark [J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(10):2079-2093] DOI: 10.13722/j.cnki.jrme.2020.0298
[28] 颜阁,梁收运,赵红亮. 基于GIS的斜坡单元划分方法改进与实现[J]. 地理科学,2017,37(11):1764-1770. [YAN Ge, LIANG Shouyun, ZHAO Hongliang. An approach to improving slope unit division using GIS technique [J]. Scientia Geographica Sinica, 2017, 37(11):1764-1770] DOI: 10.13249/j.cnki.sgs.2017.11.019
[29] MANDAL K, SAHA S, MANDAL S. Applying deep learning and benchmark machine learning algorithms for landslide susceptibility modelling in Rorachu river basin of Sikkim Himalaya, India [J]. Geoscience Frontiers, 2021, 12(5):101203. DOI: 10.1016/j.gsf.2021.101203
[30] HUANG Faming, YIN Kunlong, HUANG Jinsong, et al. Landslide susceptibility mapping based on self-organizing-map network and extreme learning machine [J]. Engineering Geology, 2017, 223:11-22. DOI: 10.1016/j.enggeo.2017.04.013