[1]杨三红,张芸香,郭晋平*.三种典型山地河岸林土壤氮含量时空格局对高地氮输入的响应[J].山地学报,2022,(5):648-660.[doi:10.16089/j.cnki.1008-2786.000700]
 YANG Sanhong,ZHANG Yunxiang,GUO Jinping*.Spatial-Temporal Responses of Soil Nitrogen in Three Typical Mountain Riparian Forests to Upland Nitrogen Input[J].Mountain Research,2022,(5):648-660.[doi:10.16089/j.cnki.1008-2786.000700]
点击复制

三种典型山地河岸林土壤氮含量时空格局对高地氮输入的响应
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2022年第5期
页码:
648-660
栏目:
山地环境
出版日期:
2022-09-25

文章信息/Info

Title:
Spatial-Temporal Responses of Soil Nitrogen in Three Typical Mountain Riparian Forests to Upland Nitrogen Input
文章编号:
1008-2786-(2022)5-648-13
作者:
杨三红12张芸香12郭晋平12*
(1.山西农业大学 林学院,山西 太谷 030801; 2.功能油料树种培育与利用山西省重点实验室,山西 太谷030801)
Author(s):
YANG Sanhong12 ZHANG Yunxiang12 GUO Jinping12*
(1. Forestry College, Shanxi Agricultural University, Taigu 030801, Shanxi, China; 2. Shanxi Key Laboratory of Functional Oil Tree Cultivation and Research, Taigu 030801, Shanxi, China)
关键词:
高地氮输入 土壤氮含量 时空响应 山地河岸林 文峪河流域
Keywords:
upland nitrogen input soil nitrogen concentration spatial-temporal response mountain riparian forest Wenyu River Basin
分类号:
S714.5
DOI:
10.16089/j.cnki.1008-2786.000700
文献标志码:
A
摘要:
河岸林土壤和植被对高地养分的滤除功能是河岸带生态保护与恢复的基础。揭示特定河岸林土壤氮含量的时空格局对高地氮输入的响应,有助于加深对河岸林氮滤除过程和机制的认识。目前对高地氮输入下山地河岸林土壤对氮的削减作用及林型差异、距离梯度格局及其变化的规律尚不确切。本文以文峪河上游云杉、华北落叶松和杨桦三种典型山地河岸林土壤为研究对象,采用原位土壤实验槽并模拟高地氮输入的方法,分析土壤全氮、硝态氮和铵态氮含量在土层深度、距离上的梯度格局及其随时间的变化,分析不同林型和输入量之间的差异。结果表明:(1)三种山地河岸林土壤在不同氮输入下,土壤全氮和铵态氮含量随时间升高而硝态氮降低,华北落叶松林土壤对氮的转化最明显;(2)河岸林土壤中全氮含量变化率阈值在5 m附近,而铵态氮和硝态氮含量变化率阈值分别在9 m和10 m附近;(3)土层深度对土壤全氮和硝态氮含量起决定作用,而氮输入量大小显著影响了土壤铵态氮含量。研究结果可为流域污染防控中的山地河岸林类型选择和河岸带宽度设计提供依据。
Abstract:
The intercepting and stabilizing of upland nutrient by soil and vegetation in riparian forests is pivotal to ecological protection and restoration of riparian zones. Unfortunately, it was not quite clear about the interception behavior of soil and vegetation in riparian forests on upland nitrogen input in the varied forms, and their differences in filtration capacity due to distinct forest types or distance gradient of nutrient migration.In this paper, soils in three typical riparian forest(Larix gmelinii var. principis-rupprechtii, Picea meyeri-Picea willsonii and Populus davidiana-Betula platyphylla)located in the upper reaches of the Wenyu River were investigated. The gradient pattern of soil total nitrogen, nitrate nitrogen and ammonium nitrogen contents at soil depths and distances and their changes with time were analyzed by using an in-situ soil experiment tank and simulating the nitrogen input in the upland. The differences among different forest types and inputs were also analyzed.Here are results:(1)The conversion rate of soil nitrogen was the highest in Larix gmelinii var. principis-rupprechtii forest at different nitrogen input levels. Soil total nitrogen contents and ammonium nitrogen contents increased with time, while soil nitrate nitrogen contents decreased with time in three riparian forest types.(2)There were temporal and spatial variations of soil nitrogen conversion rate in three riparian forests with a clear turning point: The turning points of conversion rate of soil total nitrogen, ammonium nitrogen and nitrate nitrogen were nearly at 5 m, 9 m and 10 m respectively.(3)The soil depth had decisive effect on soil total nitrogen and nitrate nitrogen contents, and the different levels of nitrogen input significantly influenced soil ammonium nitrogen contents.By this study, it reveals the spatial and temporal patterns of soil N content in specific riparian forests in response to upland N input, which deepens the understanding of the process and mechanism of nitrogen filtration in riparian forests, and it can provide a basis for selection of mountain riparian forest types and the width of riparian zone for pollution prevention and control in the watershed.

参考文献/References:

[1] 王庆成,崔东海,王新宇,等. 帽儿山地区不同类型河岸带土壤的反硝化效率[J]. 应用生态学报,2007,18(12): 2681-2686. [WANG Qingcheng, CUI Donghai, WANG Xinyu, et al. Soil denitrification rates in different type riparian zones in Maoershan mountainous region of China [J]. Chinese Journal of Applied Ecology, 2007,18(12):2681-2686] DOI: 10.13287/j.1001-9332.2007.0478
[2] 阎丽凤,石险峰,于立忠,等. 沈阳地区河岸植被缓冲带对氮、磷的削减效果研究[J]. 中国生态农业学报,2011,19(2):403-408. [YAN Lifeng, SHI Xianfeng, YU Lizhong, et al. Elimination effects of riparian vegetation buffer zones on surface water nitrogen and phosphorus in Shenyang suburbs [J]. Chinese Journal of Eco-Agriculture, 2011, 19(2):403-408] DOI: 10.3724/SP.J.1011.2011.00403
[3] MOORE R D, RICHARDSON J S. Progress towards understanding the structure, function, and ecological significance of small stream channels and their riparian zones [J]. Canadian Journal of Forest Research,2003,33(8):1349-1351. DOI: 10.1139/X03-146
[4] 王琼,范康飞,范志平,等. 河岸缓冲带对氮污染物削减作用研究进展[J]. 生态学杂志,2020,39(2):665-677. [WANG Qiong, FAN Kangfei, FAN Zhiping, et al. Nitrogen pollutant removal by riparian buffer zone: A review [J]. Chinese Journal of Ecology, 2020, 39(2):665-677] DOI: 10.13292/j.1000-4890.202002.003
[5] 李晓娜,张国芳,武美军,等. 不同植被过滤带对农田径流泥沙和氮磷拦截效果与途径[J]. 水土保持学报,2017,31(3):39-44+50. [LI Xiaona, ZHANG Guofang, WU Meijun, et al. Interception ways and effects of grass filter strips on sediment, nitrogen and phosphorus in agricultural runoff [J]. Journal of Soil and Water Conservation, 2017, 31(3):39-44+50] DOI: 10.13870/j.cnki.stbcxb.2017.03.007
[6] 李锐,牛江波,杨超,等. 长江上游江津段河岸带对陆源氮磷的拦截作用研究[J]. 西南大学学报(自然科学版),2017,39(10):11-19. [LI Rui, NIU Jiangbo, YANG Chao, et al. Study on the interception of riparian to nitrogen and phosphorus at Deganba of Jiangjin in the upper reaches of the Yangtze River [J]. Journal of Southwest University(Natural Science Edition), 2017, 39(10):11-19] DOI: 10.13718/j.cnki.xdzk.2017.10.002
[7] FERNANDES J F, SOUZA A L T, TANAKA M O. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study [J]. Hydrobiologia, 2014, 724:175-185. DOI: 10.1007/s10750-013-1732-1
[8] NAVA-LÓPEZ M Z, DIEMONT S A W, HALL M, et al. Riparian buffer zone and whole watershed influences on river water quality: Implications for ecosystem services near megacities [J]. Environmental Processes, 2016, 3(2):277-305. DOI: 10.1007/s40710-016-0145-3
[9] VIDON P, ALLAN C, BURNS D, et al. Hot spots and hot moments in riparian zones: Potential for improved water quality management [J]. Journal of the American Water Resources Association, 2010, 46(2):278-298. DOI: 10.1111/j.1752-1688.2010.00420.x
[10] HATANO R, NAGUMO T, HATA H, et al. Impact of nitrogen cycling on stream water quality in a basin associated with forest, grassland, and animal husbandry, Hokkaido, Japan [J]. Ecological Engineering, 2005, 24(5):509-515. DOI: 10.1016/j.ecoleng.2005.01.011
[11] KIM K D, PARK M H, LEE C S. Evaluation of the degraded riparian ecosystems in the Geum river watershed in Korea [J]. Journal of Plant Biology, 2012, 55:132-142. DOI: 10.1007/s12374-011-9196-1
[12] ZHAO Shan, ZHOU Nianqing, LIU Xiaoqun. Occurrence and controls on transport and transformation of nitrogen in riparian zones of Dongting Lake, China [J]. Environmental Science and Pollution Research, 2016, 23:6483-6496. DOI: 10.1007/s11356-015-5865-9
[13] PELT R V, O'KEEFE T C, LATTERELL J J, et al. Riparian forest stand development along the Queets river in Olympic National Park, Washington [J]. Ecological Monographs, 2006, 76(2):277-298. DOI: 10.1890/05-0753
[14] 孟亦奇,吴永波,朱颖,等. 利用河岸缓冲带去除径流水中氮的研究[J]. 湿地科学,2016,14(4):532-537. [MENG Yiqi, WU Yongbo, ZHU Ying, et al. The study on removing nitrogen in runoff water by riparian buffer strips [J]. Wetland Science, 2016, 14(4):532-537] DOI: 10.13248/j.cnki.wetlandsci.2016.04.012
[15] CHRISTENSEN J R, NASH M S, NEALE A. Identifying riparian buffer effects on stream nitrogen in southeastern coastal plain watersheds [J]. Environmental Management, 2013, 52(5):1161-1176. DOI: 10.1007/s00267-013-0151-4
[16] JIANG Kaixia, LI Zhaofu, LUO Chuan, et al. The reduction effects of riparian reforestation on runoff and nutrient export based on AnnAGNPS model in a small typical watershed, China [J]. Environmental Science and Pollution Research, 2019, 26(6):5934-5943. DOI: 10.1007/s11356-018-4030-7
[17] ZARNETSKE J P, HAGGERTY R, WONDZELL S M, et al. Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone [J]. Journal of Geophysical Research, 2011, 116:G01025. DOI: 10.1029/2010JG001356
[18] BOZ B, GUMIERO B. Nitrogen removal in an afforested riparian zone: The contribution of denitrification processes [J]. Hydrobiologia, 2016, 774(1):167-182. DOI: 10.1007/s10750-015-2609-2
[19] JIANG R, HATANO R, HILL R. Water connectivity in hillslope of upland-riparian zone and the implication for stream nitrate-N export during rain events in an agricultural and forested watershed [J]. Environmental Earth Sciences, 2015, 74(5):4535-4547. DOI: 10.1007/s12665-015-4516-2
[20] HILL A R. Groundwater nitrate removal in riparian buffer zones: A review of research progress in the past 20 years [J]. Biogeochemistry, 2019, 143(4):347-369. DOI: 10.1007/s10533-019-00566-5
[21] 阎丽凤,雷泽勇,刘胜利,等. 河岸缓冲带不同植被配置对铵氮去除效果研究[J]. 世界科技研究与发展,2011,33(1):46-48+53. [YAN Lifeng, LEI Zeyong, LIU Shengli, et al. Researches on removal efficiency of ammonium nitrogen pollutant of different vegetation configuration of riparian buffer strips [J]. World Science and Technology Research and Development, 2011, 33(1):46-48+53] DOI: 10.3969/j.issn.1006-6055.2011.01.014
[22] 黄俊霖,郑明霞,苏婧,等. 奎河河水入渗对河岸带地下水氨氮和硝酸盐氮浓度的影响[J]. 环境科学研究,2020,33(2):421-430. [HUANG Junlin, ZHENG Mingxia, SU Jing, et al. Effects of Kuihe river infiltration on the concentration of ammonia nitrogen and nitrate nitrogen in groundwater of riparian zone [J]. Research of Environmental Sciences, 2020, 33(2):421-430] DOI: 10.13198/j.issn.1001-6929.2019.03.09
[23] 周思思,王冬梅. 河岸缓冲带净污机制及其效果影响因子研究进展[J]. 中国水土保持科学,2014,12(5):114-120. [ZHOU Sisi, WANG Dongmei. The review on purification mechanism and its influencing factors of riparian buffers [J]. Science of Soil and Water Conservation, 2014, 12(5):114-120] DOI: 10.16843/j.sswc.2014.05.019
[24] 汤家喜,何苗苗,周博文,等. 辽河上游河岸植被过滤带对地下渗流中氮磷截留效果的影响[J]. 水土保持学报,2018,32(1):39-45. [TANG Jiaxi, HE Miaomiao, ZHOU Bowen, et al. Ground water nitrogen and phosphorus retention by established riparian vegetated filter strips in the upstream of Liaohe River [J]. Journal of Soil and Water Conservation, 2018, 32(1):39-45] DOI: 10.13870/j.cnki.stbcxb.2018.01.007
[25] 樊兰英,郭晋平,张芸香,等. 山地河岸林土壤对硝态氮和铵态氮的截留及影响因素[J]. 水土保持学报,2011,25(2): 134-137. [FAN Lanying, GUO Jinping, ZHANG Yunxiang, et al. Retention and influence factors of No3--N and NH4+-N by riparian forest planted on hill [J]. Journal of Soil and Water Conservation, 2011, 25(2):134-137] DOI: 10.13870/j.cnki.stbcxb.2011.02.011
[26] CHRISTENSEN J R, NASH M S, NEALE A. Identifying riparian buffer effects on stream nitrogen in southeastern coastal plain watersheds [J]. Environmental Management, 2013, 52(5):1161-1176. DOI: 10.1007/s00267-013-0151-4
[27] BEDISON J E, SCATENA F N, MEAD J V. Influences on the spatial pattern of soil carbon and nitrogen in forested and non-forested riparian zones in the Atlantic coastal plain of the Delaware river basin [J]. Forest Ecology and Management, 2013, 302:200-209. DOI: 10.1016/j.foreco.2013.03.012
[28] 邓红兵,王青春,王庆礼,等. 河岸植被缓冲带与河岸带管理[J]. 应用生态学报,2001,12(6):951-954. [DENG Hongbing, WANG Qingchun, WANG Qingli, et al. On riparian forest buffers and riparian management [J]. Chinese Journal of Applied Ecology, 2001, 12(6):951-954] DOI: 10.3321/j.issn:1001-9332.2001-06-036
[29] 闫雅妮,廖曼,王智真,等. 河岸带介质中硝态氮衰减机制的实验研究[J]. 桂林理工大学学报, 2020,40(1): 218-223. [YAN Yani, LIAO Man, WANG Zhizhen, et al. Experimental study on the attenuation mechanism of nitrate in riparian zone medium [J]. Journal of Guilin University of Technology, 2020, 40(1):218-223] DOI: 10.3969/j.issn.1674-9057.2020.01.028
[30] HAN Lei, HUANG Wei, YUAN Xuyin, et al. Denitrification potential and influencing factors of the riparian zone soils in different watersheds, Taihu basin [J]. Water Air and Soil Pollution, 2017, 228(3): 108. DOI: 10.1007/s11270-017-3287-7
[31] BAATTRUP-PEDERSEN A, HOFFMANN C C, AUDET J, et al. Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments [J]. Ecological Engineering, 2014, 66:111-119. DOI: 10.1016/j.ecoleng.2013.07.047
[32] WILLIAMS M R, BUDA A R, ELLIOTT H A, et al. Groundwater flow path dynamics and nitrogen transport potential in the riparian zone of an agricultural headwater catchment [J]. Journal of Hydrology, 2014, 511:870-879. DOI: 10.1016/j.jhydrol.2014.02.033
[33] 李素新,郭小宇,张芸香,等. 文峪河上游河岸林土壤氮素截留潜力及其影响因素[J]. 山西农业大学学报(自然科学版),2015,35(4):382-387. [LI Suxin, GUO Xiaoyu, ZHANG Yunxiang, et al. Soil nitrogen retention potential and influencing factors of riparian forest in upstream Wenyu River [J]. Journal of Shanxi Agricultural University(Nature Science Edition), 2015, 35(4):382-387]. DOI: 10.3969/j.issn1671-8151.2015.04.010
[34] 王庆成,于红丽,姚琴,等. 河岸带对陆地水体氮素输入的截流转化作用[J]. 应用生态学报,2007,18(11):2611-2617. [WANG Qingcheng, YU Hongli, YAO Qin, et al. Retaining and transformation of incoming soil N from highland to adjacent terrestrial water body in riparian buffer zone [J]. Chinese Journal of Applied Ecology, 2007, 18(11):2611-2617] DOI: 10.13287/j.1001-9332.2007.0432
[35] 杨三红, 郭晋平, 王建让, 等. 文峪河上游3种典型河岸林土壤理化性质研究[J]. 中国农学通报,2015,31(16):207-211. [YANG Sanhong, GUO Jinping, WANG Jianrang, et al. Study on soil physical and chemical properties of three typical riparian forests of Wenyu River upstream [J]. Chinese Agricultural Science Bulletin, 2015, 31(16):207-211] DOI: 10.11924/j.issn.1000-6850.2014-1152
[36] 夏继红,鞠蕾,林俊强, 等. 河岸带适宜宽度要求与确定方法[J]. 河海大学学报(自然科学版),2013,41(3):229-234. [XIA Jihong, JU Lei, LIN Junqiang, et al. Requirements for suitable width of riparian zone and determination methods [J]. Journal of Hohai University(Natural Sciences), 2013, 41(3):229-234] DOI: 10.3876/j.issn.1000-1980.2013.03.007
[37] 朱晓成,吴永波,余昱莹,等. 太湖乔木林河岸植被缓冲带截留氮素效率[J]. 浙江农林大学学报,2019,36(3): 565-572. [ZHU Xiaocheng, WU Yongbo, YU Yuying, et al. Removing nitrogen with trees planted in the riparian vegetation buffer strips of Taihu Lake [J]. Journal of Zhejiang Agriculture and Forestry University, 2019, 36(3):565-572] DOI: 10.11833/j.issn.2095-0756.2019.03.018
[38] 王大鹏,郑亮,罗雪华,等. 砖红壤不同温度、水分及碳氮源条件下硝化和反硝化特征[J]. 土壤通报,2018,49(3): 616-622. [WANG Dapeng, ZHENG Liang, LUO Xuehua, et al. Nitrification and denitrification under different temperature, moisture, carbon and nitrogen sources in latosols [J]. Chinese Journal of Soil Science, 2018, 49(3):616-622] DOI: 10.19336/j.cnki.trtb.2018.03.17
[39] 刘庆,魏建兵,吴志峰,等. 广州市流溪河河岸带土壤反硝化作用的多尺度影响因子[J]. 中国环境科学,2015,35(10):3069-3077. [LIU Qing, WEI Jianbing, WU Zhifeng, et al. Effects of multi-scale control factors on spatial heterogeneity of denitrification in riparian soil: A case study in Liuxi River of Guangzhou city [J]. China Environmental Science, 2015, 35(10):3069-3077] DOI: 10.3969/j.issn.1000-6923.2015.10.026

备注/Memo

备注/Memo:
收稿日期(Received date):2022-05-12; 改回日期(Accepted date): 2022-10-04
基金项目(Foundation item):国家自然科学基金(30970480)[National Natural Science Foundation of China(30970480)]
作者简介(Biography): 杨三红(1978-),男,山西汾西人,博士,讲师,主要研究方向:景观生态学。[YANG Sanhong(1978-),male, born in Fenxi, Shanxi province, Ph.D., lecturer, research on landscape ecology] E-mail: ysh@sxau.edu.cn
*通讯作者(Corresponding author): 郭晋平(1963-),男,博士,教授,主要研究方向:森林生态与经营及森林景观生态。[GUO Jinping(1963-), male, Ph.D., professor, research on forest ecology and management and forest landscape ecology] E-mail: jinpguo@126.com
更新日期/Last Update: 2022-10-30