参考文献/References:
[1] MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils [J]. New Phytologist, 2012, 196: 79-91. DOI: 10. 111/j.1469-8137.2012.04225.x
[2] GEYER K M, DIJKSTRA P, SINSABAUGH R, et al. Clarifying the interpretation of carbon use efficiency in soil through methods comparison [J]. Soil Biology and Biochemistry, 2019, 128: 79-88. DOI: 10.1016/j.soilbio.2018.09.036
[3] QIAO Yang, WANG Jing, LIANG Guopeng, et al. Global variation of soil microbial carbon-use efficiency in relation to growth temperature and substrate supply [J]. Scientific Reports, 2019, 9: 5621. DOI: 10.1038/s41598-019-42145-6
[4] SINSABAUGH R L, MANZONI S, MOORHEAD D L, et al. Carbon use efficiency of microbial communities:Stoichiometry, methodology and modelling [J]. Ecology Letters, 2013,16: 930-939. DOI: 10.1111/ele.12113
[5] SPOHN M, KLAUS K, WANEK W, et al. Microbial carbon use efficiency and biomass turnover times depending on soil depth-implications for carbon cycling [J]. Soil Biology and Biochemistry, 2016, 96: 74-81. DOI: 10.1016/j.soilbio.2016.01.016
[6] SPOHN M, PÖTSCH E M, EICHORST S A, et al. Soil microbial carbon use efficiency and biomass turnover in a long-term fertilization experiment in a temperate grassland [J]. Soil Biology and Biochemistry, 2016, 97: 168-175. DOI: 10.1016/j.soilbio.2016.03.008
[7] FREY S D, LEE J, MELILLO J M, et al. The temperature response of soil microbial efficiency and its feedback to climate [J]. Nature Climate Change, 2013, 3: 395-398. DOI: 10.1038/NCLIMATE1796
[8] TUCKER C L, BELL J, PENDALL E, et al. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? [J]. Global Change Biology, 2013, 19: 252-263. DOI: 10.1111/gcb.12036
[9] ALLISON S D.Modeling adaptation of carbon use efficiency in microbial communities [J]. Frontiers in Microbiology, 2014, 5: 571. DOI: 10.3389/fmicb.2014.00571
[10] HAGERTY S B, GROENIGEN K J, ALLISON S D, et al. Accelerated microbial turnover but constant growth efficiency with warming in soil [J]. Nature Climate Change, 2014, 4: 903-906. DOI: 10.1038/NCLIMATE2361
[11] ADINGO S, RU J R, LIU X L, et al. Variation of soil microbial carbon use efficiency(CUE)and its influence mechanism in the context of global environmental change: A review [J]. Peer J, 2021, 9: e12131. DOI: 10.7717/peerj.12131
[12] SINSABAUGH R L, MOORHEAD D L, XU X F, et al. Plant, microbial and ecosystem carbon use efficiencies interact to stabilize microbial growth as a fraction of gross primary production [J]. New Phytologist, 2017, 214: 1518-1526. DOI: 10.1111/nph.14485
[13] DAVIDSON E A, SAVAGE K E, FINZI A C. A big-microsite framework for soil carbon modeling [J]. Global Change Biology, 2014, 20: 3610-3620. DOI: 10.1111/gcb.12718
[14] MCGEE K M, EATON W D, SHOKRALLA S, et al. Determinants of soil bacterial and fungal community composition toward carbon-use efficiency across primary and secondary forests in a Costa Rican conservation area [J]. Microbial Ecology, 2019, 77: 148-167. DOI: 10.1007/s00248-018-1206-0
[15] GEYER K M, KYKER-SNOWMAN E, GRANDY A S, et al. Microbial carbon use efficiency: Accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter [J]. Biogeochemistry, 2016, 127: 173-188. DOI: 10.1007/s10533-016-0191-y
[16] SINSABAUGH R L, TURNER B L, TALBOT J M, et al. Stoichiometry of microbial carbon use efficiency in soils [J]. Ecological Monographs, 2016, 86(2): 172-189. DOI: 10.1890/15-2110.1
[17] HARARUK O, SMITH M J, LUO Y Q. Microbial models with data-driven parameters predict stronger soil carbon responses to climate change [J]. Global Change Biology, 2015, 21: 2439-2453. DOI: 10.1111/gcb.12827
[18] BRADFORD M A, WIEDER W R, BONAN G B, et al. Managing uncertainty in soil carbon feedbacks to climate change [J]. Nature Climate Change, 2016, 6: 751-758. DOI: 10.1038/NCLIMATE3071
[19] LI J W, WANG G S, MAYES M A, et al. Reduced carbon use efficiency and increased microbial turnover with soil warming [J]. Global Change Biology, 2019, 25: 900-910. DOI: 10.1111/gcb.14517
[20] SIMON E, CANARINI A, MARTIN V, et al. Microbial growth and carbon use efficiency show seasonal responses in a multifactorial climate change experiment [J]. Communications Biology, 2020, 3(1): 584-584. DOI: 10.1038/s42003-020-01317-1
[21] WIDDIG M, SCHLEUSS P M, BIEDERMAN L A, et al. Microbial carbon use efficiency in grassland soils subjected to nitrogen and phosphorus additions [J]. Soil Biology and Biochemistry, 2020, 146: 107815. DOI: 10.1016/j.soilbio.2020.107815
[22] WANG G S, POST W M, MAYES M A. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses [J]. Ecological Applications, 2013, 23(1): 255-272. DOI: 10.2307/23440831
[23] WIEDER W R, GRANDY A S, KALLENBACH C M, et al. Integrating microbial physiology and physio-chemical principles in soils with the microbial-mineral carbon stabilization(MIMICS)model [J]. Biogeosciences, 2014, 11: 3899-3917. DOI: 10.5194/bg-11-3899-2014
[24] GEORGIOU K, ABRAMOFF R Z, HARTE J, et al. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations [J]. Nature Communications, 2017, 8(1): 1223. DOI: 10.1038/s41467-017-01116-z
[25] MALIK A A, PUISSANT J, BUCKERIDGE K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018, 9: 3591. DOI: 10.1038/s41467-018-05980-1
[26] WIEDER W R, BONAN G B, ALLISON S D. Global soil carbon projections are improved by modelling microbial processes [J]. Nature Climate Change, 2013, 3: 909-912. DOI: 10.1038/NCLIMATE1951
[27] JONES D L, OLIVERA-ARDID S, KLUMPP E, et al. Moisture activation and carbon use efficiency of soil microbial communities along an aridity gradient in the Atacama Desert [J]. Soil Biology and Biochemistry, 2018, 117: 68-71. DOI: 10.1016/j.soilbio.2017.10.026
[28] DAVIDSON E A, JANSSENS I A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change [J]. Nature, 2006, 440: 165-173. DOI: 10.1038/nature04514
[29] BRADFORD M A, DAVIES C A, FREY S D, et al. Thermal adaptation of soil microbial respiration to elevated temperature [J]. Ecology Letters, 2008, 11: 1316-1327. DOI: 10.1111/j.1461-0248.2008.01251.x
[30] HEIMANN M, REICHSTEIN M. Terrestrial ecosystem carbon dynamics and climate feedbacks [J]. Nature, 2008, 451: 289-292. DOI: 10.1038/nature06591
[31] MILCU A, LUKAC M, SUBKE J A, et al. Biotic carbon feedbacks in a materially closed soil-vegetation-atmosphere system [J]. Nature Climate Change, 2012, 2: 291-294. DOI: 10.1038/NCLIMATE1448
[32] LI J W, WANG G S, ALLISON S D, et al. Soil carbon sensitivity to temperature and carbon use efficiency compared across microbial-ecosystem models of varying complexity [J]. Biogeochemistry, 2014, 119: 67-84. DOI: 10.1007/s10533-013-9948-8
[33] GRAHAM E B, KNELMAN J E, SCHINDLBACHER A. Microbes as engines of ecosystem function: When does community structure enhance predictions of ecosystem processes? [J]. Frontiers in Microbiology, 2016, 7: 214. DOI: 10.3389/fmicb.2016.00214
[34] HAGENBO A, HADDEN D, CLEMMENSEN K E, et al. Carbon use efficiency of mycorrhizal fungal mycelium increases during the growing season but decreases with forest age across a Pinus sylvestris chronosequence [J]. Journal of Ecology, 2019, 107: 2808-2822. DOI: 10.1111/1365-2745.13209
[35] 吴建平, 王思敏, 蔡慕天, 等. 植物与微生物碳利用效率及影响因子研究进展[J]. 生态学报, 2019, 39(20): 7771-7779. [WU Jianping, WANG Simin, CAI Mutian, et al. Review on carbon use efficiency of plants and microbes and its influencing factors [J]. Acta Ecologica Sinica, 2019, 39(20): 7771-7779]DOI: 10.5846/stxb201812072685
[36] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss [J]. Nature Geoscience, 2015, 8: 776-779. DOI: 10.1038/ngeo2520
[37] YIN L M, CORNEO P E, RICHTER A, et al. Variation in rhizosphere priming and microbial growth and carbon use efficiency caused by wheat genotypes and temperatures [J]. Soil Biology and Biochemistry, 2019, 134: 54-61. DOI: 10.1016/j.soilbio.2019.03.019
[38] ZHRAN M, GE T D, TONG Y Y, et al. Assessment of depth-dependent microbial carbon use efficiency in long-term fertilized paddy soil using an 18O-H2O approach [J]. Land Degradation and Development, 2021, 32: 199-207. DOI: 10.1002/ldr.3708
[39] FANG Y Y, SINGH B P, COLLINS D, et al. Nutrient supply enhanced wheat residue-carbon mineralization, microbial growth, and microbial carbon-use efficiency when residues were supplied at high rate in contrasting soils [J]. Soil Biology and Biochemistry, 2018, 126: 168-178. DOI: 10.1016/j.soilbio.2018.09.003
[40] LIANG C, AMELUNG W, LEHMANN J, et al. Quantitative assessment of microbial necromass contribution to soil organic matter [J]. Global Change Biology, 2019, 25(11): 3578-3590. DOI: 10.1111/gcb.14781
[41] BARROS N, HANSEN L D, PINEIRO V, et al. Factors influencing the calorespirometric ratios of soil microbial metabolism [J]. Soil Biology and Biochemistry, 2016, 92: 221-229. DOI: 10.1016/j.soilbio.2015.10.007
[42] MANZONI S, CAPEK P, MOOSHAMMER M, et al. Optimal metabolic regulation along resource stoichiometry gradients [J]. Ecology Letters, 2017, 20: 1182-1191. DOI: 10.1111/ele.12815
[43] QU L R, WANG C, BAI E. Evaluation of the 18O-H2O incubation method for measurement of soil microbial carbon use efficiency [J]. Soil Biology and Biochemistry, 2020, 145: 107802. DOI: 10.1016/j.soilbio.2020.107802
[44] SCHWARTZ E. Characterization of growing microorganisms in soil by stable isotope probing with H218O [J]. Applied and Environmental Microbiology, 2007, 73: 2541-2546. DOI: 10.1128/AEM.02021-06
[45] BLAZEWICZ S J, SCHWARTZ E. Dynamics of 18O incorporation from H218O into soil microbial DNA [J]. Microbial Ecology, 2011, 61: 911-916. DOI: 10.1007/s00248-011-9826-7
[46] ANDERSON T H, MARTENS R. DNA determinations during growth of soil microbial biomasses [J]. Soil Biology and Biochemistry, 2013, 57: 487-495. DOI: 10.1016/j.soilbio.2012.09.031
[47] CANARINI A, WANEK W, WATZKA M, et al. Quantifying microbial growth and carbon use efficiency in dry soil environments via 18O water vapor equilibration [J]. Global Change Biology, 2020, 26: 5333-5341. DOI: 10.1111/gcb.15168
[48] DIJKSTRA P, THOMAS S C, HEINRICH P L, et al. Effect of temperature on metabolic activity of intact microbial communities: Evidence for altered metabolic pathway activity but not for increased maintenance respiration and reduced carbon use efficiency [J]. Soil Biology and Biochemistry, 2011, 43: 2023-2031. DOI: 10.1016/j.soilbio.2011.05.018
[49] STERNER R W, ELSER J J. Stoichiometry in microbial communities: Dynamics and interactions [M]. Princeton: Princeton University Press, 2002.
[50] CHERIF M, LOREAU M. Stoichiometric constraints on resource use, competitive interactions, and elemental cycling in microbial decomposers [J]. American Naturalist, 2007, 169(6): 709-724. DOI: 10.1086/516844
[51] SINSABAUGH R L, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry and ecological theory [J]. Annual Review of Ecology, Evolution and Systematics, 2012, 43: 313-343. DOI: 10.1146/annurev-ecolsys-071112-124414
[52] AGUMAS B, BLAGODATSKY S, BALUME I, et al. Microbial carbon use efficiency during plant residue decomposition: Integrating multi-enzyme stoichiometry and C balance approach [J]. Applied Soil Ecology, 2021, 159: 103820. DOI: 10.1016/j.apsoil.2020.103820
[53] SIX J, FREY S D, THIET R K, et al. Bacterial and fungal contributions to carbon sequestration in agroecosystems [J]. Soil Science Society of America Journal, 2006, 70: 555-569. DOI: 10.2136/sssaj2004.0347
[54] CONANT R T, RYAN M G, ÅGREN G I, et al. Temperature and soil organic matter decomposition rates - synthesis of current knowledge and a way forward [J]. Global Change Biology, 2011, 17: 3392-3404. DOI: 10.1111/j.1365-2486.2011.02496.x
[55] MANZONI S, TAYLOR P, RICHTER A, et al. Environmental and stoichiometric controls on microbial carbon-use efficiency in soils [J]. New Phytologist, 2012, 196(1): 79-91. DOI: 10.1111/j.1469-8137.2012.04225.x
[56] COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization(MEMS)framework integrates plant litter decomposition with soil organic matter stabilization: Do labile plant inputs form stable soil organic matter? [J]. Global Change Biology, 2013, 19(4): 988-995. DOI: 10.1111/gcb.12113
[57] FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests [J]. Soil Biology and Biochemistry, 2015, 81: 212-218. DOI: 10.1016/j.soilbio.2014.11.022
[58] LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage [J]. Nature Microbiology, 2017, 2: 17105. DOI: 10.1038/nmicrobiol.2017.105
[59] LIU Weixing, QIAO Chunlian, YANG Sen, et al. Microbial carbon use efficiency and priming effect regulate soil carbon storage under nitrogen deposition by slowing soil organic matter decomposition [J]. Geoderma, 2018, 332: 37-44. DOI: 10.1016/j.geoderma.2018.07.008
[60] POEPLAU C, HELFRICH M, DECHOW R, et al. Increased microbial anabolism contributes to soil carbon sequestration by mineral fertilization in temperate grasslands [J]. Soil Biology and Biochemistry, 2019, 130: 167-176. DOI: 10.1016/j.soilbio.2018.12.019
[61] YE J S, BRADFORD M A, DACAL M. Increasing microbial carbon use efficiency with warming predicts soil heterotrophic respiration globally [J]. Global Change Biology, 2019, 25: 3354-3364. DOI: 10.1111/GCB.14738
[62] KIVLIN S N, WARING B G, AVERILL C, et al. Tradeoffs in microbial carbon allocation may mediate soil carbon storage in future climates [J]. Frontiers in Microbiology, 2013, 4: 261. DOI: 10.3389/fmicb.2013.00261
[63] ALLISON S D, WALLENSTEIN M D, BRADFORD M A. Soil-carbon response to warming dependent on microbial physiology [J]. Nature Geoscience, 2010, 3: 336-340. DOI: 10.1038/NGEO846
[64] 梁超, 朱雪峰. 土壤微生物碳泵储碳机制概论[J]. 中国科学: 地球科学, 2021, 51(5): 680-695.[LIANG Chao, ZHU Xuefeng. The soil microbial carbon pump as a new concept for terrestrial carbon sequestration [J]. Science China Earth Sciences, 2021, 51(5): 680-695]DOI: 10.1360/SSTe-2020-0213
[65] HERRON P M, STARK J M, HOLT C, et al. Microbial growth efficiencies across a soil moisture gradient assessed using 13C-acetic acid vapor and 15N-ammonia gas [J]. Soil Biology and Biochemistry, 2009, 41: 1262-1269. DOI: 10.1016/j.soilbio.2009.03.010
[66] TAKRITI M, WILD B, SCHNECKER J, et al. Soil organic matter quality exerts a stronger control than stoichiometry on microbial substrate use efficiency along a latitudinal transect [J]. Soil Biology and Biochemistry, 2018, 121: 212-220. DOI: 10.1016/j.soilbio.2018.02.022
[67] WALKER T W N, KAISER C, STRASSER F, et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming [J]. Nature Climate Change, 2018, 8: 885-889. DOI: 10.1038/s41558-018-0259-x
[68] ZHENG Qing, HU Yuntao, ZHANG Shasha, et al. Growth explains microbial carbon use efficiency across soils differing in land use and geology [J]. Soil Biology and Biochemistry, 2019, 128: 45-55. DOI: 10.1016/j.soilbio.2018.10.006
[69] BÖLSCHER T, WADSÖ L, BÖRJESSON G, et al. Differences in substrate use efficiency: Impacts of microbial community composition, land use management, and substrate complexity [J]. Biology and Fertility of Soils, 2016, 52: 547-559. DOI: 10.1007/s00374-016-1097-5
[70] SOARES M, ROUSK J. Microbial growth and carbon use efficiency in soil: Links to fungal-bacterial dominance, SOC-quality and stoichiometry [J]. Soil Biology and Biochemistry, 2019, 131: 195-205. DOI: 10.1016/j.soilbio.2019.01.010
[71] WANG Simin, CHEN Xiaoyun, LI Debao, et al. Effects of soil organism interactions and temperature on carbon use efficiency in three different forest soils [J]. Soil Ecology Letters, 2021, 3(2): 156-166. DOI: 10.1007/s42832-020-0067-x
[72] OLIVER E E, HOULTON B Z, LIPSON D A. Controls on soil microbial carbon use efficiency over long-term ecosystem development [J]. Biogeochemistry, 2021, 152: 309-325. DOI: 10.1007/s10533-021-00758-y
[73] BRADFORD M A, CROWTHER T W. Carbon use efficiency and storage in terrestrial ecosystems [J]. New Phytologist, 2013, 199: 7-9. DOI: 10.1111/nph.12334
[74] LEE Z M, SCHMIDT T M. Bacterial growth efficiency varies in soils under different land management practices [J]. Soil Biology and Biochemistry, 2014, 69: 282-290. DOI: 10.1016/j.soilbio.2013.11.012
[75] LIPSON D A, MONSON R K, SCHMIDT S K, et al. The trade-off between growth rate and yield in microbial communities and the consequences for under-snow soil respiration in a high elevation coniferous forest [J]. Biogeochemistry, 2009, 95: 23-35. DOI: 10.1007/s10533-008-9252-1
[76] MAYNARD D S, CROWTHER T W, BRADFORD M A. Fungal interactions reduce carbon use efficiency [J]. Ecology Letters, 2017, 20: 1034-1042. DOI: 10.1111/ele.12801
[77] STEINWEG J M, PLANTE A F, CONANT R T, et al. Patterns of substrate utilization during long-term incubations at different temperatures [J]. Soil Biology and Biochemistry, 2008, 40: 2722-2728. DOI: 10.1016/j.soilbio.2008.07.002
[78] KEIBLINGER K M, HALL E K, WANEK W, et al. The effect of resource quantity and resource stoichiometry on microbial carbon-use efficiency [J]. FEMS Microbiology Ecology, 2010, 73: 430-440. DOI: 10.1111/j.1574-6941.2010.00912.x
[79] ÖQUIST M G, ERHAGEN B, HAEI M, et al. The effect of temperature and substrate quality on the carbon use efficiency of saprotrophic decomposition [J]. Plant and Soil, 2017, 414: 113-125. DOI: 10.1007/s11104-016-3104-x
[80] ZIEGLER S E, BILLINGS S A. Soil nitrogen status as a regulator of carbon substrate flows through microbial communities with elevated CO2 [J]. Journal of Geophysical Research-Biogeosciences, 2011, 116: G01011. DOI: 10.1029/2010JG001434
[81] DOMEIGNOZ-HORTA L A, POLD G, LIU X J A, et al. Microbial diversity drives carbon use efficiency in a model soil [J]. Nature Communications, 2020, 11: 3684. DOI: 10.1038/s41467-020-17502-z
[82] MALIK A A, CHOWDHURY S, SCHLAGER V, et al. Soil fungal: Bacterial ratios are linked to altered carbon cycling [J]. Frontiers in Microbiology, 2016, 7: 1247. DOI: 10.3389/fmicb.2016.01247
[83] BAILEY V L, SMITH J L, BOLTON H. Fungal-to-bacterial ratios in soils investigated for enhanced C sequestration [J]. Soil Biology and Biochemistry, 2002, 34: 997-1007. DOI: 10.1016/s0038-0717(02)00033-0
[84] ROELS J A. Application of macroscopic principles to microbial metabolism [J]. Biotechnology and Bioengineering, 1980, 22(12): 2457-2514. DOI: 10.1002/bit.260221202
[85] GOMMERS P J F, VAN SCHIE B J, VAN DIJKEN J P, et al. Biochemical limits to microbial growth yields: An analysis of mixed subtrate utilization [J]. Biotechnology and Bioengineering, 1988, 32: 86-94. DOI: 10.1002/bit.260320112
[86] SAIFUDDIN M, BHATNAGAR J M, SEGRE D, et al. Microbial carbon use efficiency predicted from genome-scale metabolic models [J]. Nature Communications, 2019, 10: 3568. DOI: 10.1038/s41467-019-11488-z
[87] ZELLER V, BARDGETT R D, TAPPEINER U. Site and management effects on soil microbial properties of subalpine meadows: A study of land abandonment along a north-south gradient in the European Alps [J]. Soil Biology and Biochemistry, 2001, 33: 639-649. DOI: 10.1016/s0038-0717(00)00208-x
[88] LUIS P, WALTHER G, KELLNER H, et al. Diversity of laccase genes from basidiomycetes in a forest soil [J]. Soil Biology and Biochemistry, 2004, 36: 1025-1036. DOI: 10.1016/j.soilbio.2004.02.017
[89] DE BOER W, FOLMAN L B, SUMMERBELL R C, et al. Living in a fungal world: Impact of fungi on soil bacterial niche development [J]. FEMS Microbiology Reviews, 2005, 29: 795-811. DOI: 10.1016/j.femsre.2004.11.005
[90] TALBOT J M, ALLISON S D, TRESEDER K K. Decomposers in disguise: Mycorrhizal fungi as regulators of soil C dynamics in ecosystems under global change [J]. Functional Ecology, 2008, 22(6): 955-963. DOI: 10.1111/j.1365-2435.2008.01402.x
[91] SINSABAUGH R L. Phenol oxidase, peroxidase and organic matter dynamics of soil [J]. Soil Biology and Biochemistry, 2010, 42: 391-404. DOI: 10.1016/j.soilbio.2009.10.014
[92] EATON W D, ANDERSON C, SAUNDERS E F, et al. The impact of Pentaclethra macroloba on soil microbial nitrogen fixing communities and nutrients within developing secondary forests in the Northern Zone of Costa Rica [J]. Tropical Ecology, 2012, 53(2): 207-214.
[93] HAFICH K, PERKINS E J, HAUGE J B, et al. Implications of land management on soil microbial communities and nutrient cycle dynamics in the lowland tropical forest of northern Costa Rica [J]. Tropical Ecology, 2012, 53(2): 215-224.
[94] KIVLIN S N, HAWKES C V. Tree species, spatial heterogeneity, and seasonality drive soil fungal abundance, richness, and composition in Neotropical rainforests [J]. Environmental Microbiology, 2016, 18: 4662-4673. DOI: 10.1111/1462-2920.13342
[95] HÖGBERG M N, HÖGBERG P. Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil [J]. New Phytologist, 2002, 154: 791-795. DOI: 10.1046/j.1469-8137.2002.00417.x
[96] EATON W D, MCGEE K M, DONNELLY R, et al. Differences in the soil microbial community and carbon-use efficiency following development of Vochysia guatemalensis tree plantations in unproductive pastures in Costa Rica [J]. Restoration Ecology, 2019, 27(6): 1263-1273. DOI: 10.1111/rec.12978/suppinfo
[97] WARDLE D A. The influence of biotic interactions on soil biodiversity [J]. Ecology Letters, 2006, 9: 870-886. DOI: 10.1111/j.1461-0248.2006.00931.x
[98] CROWTHER T W, SOKOL N W, OLDFIELD E E, et al. Environmental stress response limits microbial necromass contributions to soil organic carbon [J]. Soil Biology and Biochemistry, 2015, 85: 153-161. DOI: 10.1016/j.soilbio.2015.03.002
[99] CROWTHER T W, THOMAS S M, MAYNARD D S, et al. Biotic interactions mediate soil microbial feedbacks to climate change [J]. Proceedings of the National Academy of Sciences, 2015, 112: 7033-7038. DOI: 10.1073/pnas.1502956112
[100] STRICKLAND M S, ROUSK J. Considering fungal: Bacterial dominance in soils-methods, controls, and ecosystem implications [J]. Soil Biology and Biochemistry, 2010, 42: 1385-1395. DOI: 10.1016/j.soilbio.2010.05.007
[101] WARING B G, AVERILL C, HAWKES C V. Differences in fungal and bacterial physiology alter soil carbon and nitrogen cycling: Insights from meta-analysis and theoretical models [J]. Ecology Letters, 2013, 16: 887-894. DOI: 10.1111/ele.12125
[102] HERRMANN A M, COUCHENEY E, NUNAN N. Isothermal microcalorimetry provides new insight into terrestrial carbon cycling [J]. Environmental Science and Technology, 2014, 48: 4344-4352. DOI: 10.1021/es403941h
[103] RIGGS C E, HOBBIE S E. Mechanisms driving the soil organic matter decomposition response to nitrogen enrichment in grassland soils [J]. Soil Biology and Biochemistry, 2016, 99: 54-65. DOI: 10.1016/j.soilbio.2016.04.023
[104] PAUSCH J, KRAMER S, SCHARROBA A, et al. Small but active-pool size does not matter for carbon incorporation in below-ground food webs [J]. Functional Ecology, 2016, 30: 479-489. DOI: 10.1111/1365-2435.12512
[105] KALLENBACH C M, FREY S D, GRANDY A S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls [J]. Nature Communications, 2016, 7: 13630. DOI: 10.1038/ncomms13630
[106] THIET R K, FREY S D, SIX J. Do growth yield efficiencies differ between soil microbial communities differing in fungal: Bacterial ratios? Reality check and methodological issues [J]. Soil Biology and Biochemistry, 2006, 38: 837-844. DOI: 10.1016/j.soilbio.2005.07.010
[107] SINSABAUGH R L, FOLLSTAD SHAH J J, FINDLAY S G, et al. Scaling microbial biomass, metabolism and resource supply [J]. Biogeochemistry, 2015, 122: 175-190. DOI: 10.1007/s10533-014-0058-z
[108] ROUSK J, BAATH E. Fungal and bacterial growth in soil with plant materials of different C/N ratios [J]. FEMS Microbiology Ecology, 2007, 62: 258-267. DOI: 10.1111/j.1574-6941.2007.00398.x
[109] LAUBER C L, STRICKLAND M S, BRADFORD M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types [J]. Soil Biology and Biochemistry, 2008, 40: 2407-2415. DOI: 10.1016/j.soilbio.2008.05.021
[110] HAGERTY S B, ALLISON S D, SCHIMEL J P. Evaluating soil microbial carbon use efficiency explicitly as a function of cellular processes: Implications for measurements and models [J]. Biogeochemistry, 2018, 140: 269-283. DOI: 10.1007/s10533-018-0489-z
[111] MOOSHAMMER M, WANEK W, ZECHMEISTER-BOLTENSTERN S, et al. Stoichiometric imbalances between terrestrial decomposer communities and their resources: Mechanisms and implications of microbial adaptations to their resources [J]. Frontiers in Microbiology, 2014, 5: 22. DOI: 10.3389/fmicb.2014.00022
[112] MEHNAZ K R, CORNEO P E, KEITEL C, et al. Carbon and phosphorus addition effects on microbial carbon use efficiency, soil organic matter priming, gross nitrogen mineralization and nitrous oxide emission from soil [J]. Soil Biology and Biochemistry, 2019, 134: 175-186. DOI: 10.1016/j.soilbio.2019.04.003
[113] BICHARANLOO B, SHIRVAN M B, KEITEL C, et al. Rhizodeposition mediates the effect of nitrogen and phosphorous availability on microbial carbon use efficiency and turnover rate [J]. Soil Biology and Biochemistry, 2020, 142: 107705. DOI: 10.1016/j.soilbio.2020.107705
[114] PEI Junmin, LI Jinquan, MIA Shamim, et al. Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time [J]. Geoderma, 2021, 382: 114710. DOI: 10.1016/j.geoderma.2020.114710
[115] BOSSUYT H, DENEF K, SIX J, et al. Influence of microbial populations and residue quality on aggregate stability [J]. Applied Soil Ecology, 2001, 16: 195-208. DOI: 10.1016/s0929-1393(00)00116-5
[116] MANZONI S, JACKSON R B, TROFYMOW J A, et al. The global stoichiometry of litter nitrogen mineralization [J]. Science, 2008, 321: 684-686. DOI: 10.1126/science.1159792
[117] ZHOU Zhiyong, ZHANG Huan, YUAN Zhen, et al. The nutrient release rate accounts for the effect of organic matter type on soil microbial carbon use efficiency of a Pinus tabulaeformis forest in northern China [J]. Journal of Soils and Sediments, 2020, 20: 352-364. DOI: 10.1007/s11368-019-02423-2
[118] ZECHMEISTER-BOLTENSTERN S, KEIBLINGER K M, MOOSHAMMER M, et al. The application of ecological stoichiometry to plant-microbial-soil organic matter transformations [J]. Ecological Monographs, 2015, 185(2): 133-155. DOI: 10.1890/14-0777.1
[119] SCHIMEL J P, WEINTRAUB M N. The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: A theoretical model [J]. Soil Biology and Biochemistry, 2003, 35: 549-563. DOI: 10.1016/s0038-0717(03)00015-4
[120] CRAINE J M, MORROW C, FIERER N. Microbial nitrogen limitation increases decomposition [J]. Ecology, 2007, 88(8): 2105-2113. DOI: 10.2307/27651341
[121] FANG Y Y, SINGH B P, COWIE A, et al. Balancing nutrient stoichiometry facilitates the fate of wheat residue-carbon in physically defined soil organic matter fractions [J]. Geoderma, 2019, 354: 113883. DOI: 10.1016/j.geoderma.2019.113883
[122] WEI Xiaomeng, ZHU Zhenke, LIU Yi, et al. C: N: P stoichiometry regulates soil organic carbon mineralization and concomitant shifts in microbial community composition in paddy soil [J]. Biology and Fertility of Soils, 2020, 56: 1093-1107. DOI: 10.1007/s00374-020-01468-7
[123] KYASCHENKO J, CLEMMENSEN K E, HAGENBO A, et al. Shift in fungal communities and associated enzyme activities along an age gradient of managed Pinus sylvestris stands [J]. The ISME Journal, 2017, 11: 863-874. DOI: 10.1038/ismej.2016.184
[124] MANZONI S, PORPORATO A. Soil carbon and nitrogen mineralization: Theory and models across scales [J]. Soil Biology and Biochemistry, 2009, 41: 1355-1379. DOI: 10.1016/j.soilbio.2009.02.031
[125] ÅGREN G I, BOSATTA N. Theoretical analysis of the long-term dynamics of carbon and nitrogen in soils [J]. Ecology, 1987, 68(5): 1181-1189. DOI: 10.2307/1939202
[126] ROLLER B R K, SCHMIDT T M. The physiology and ecological implications of efficient growth [J]. The ISME Journal, 2015, 9: 1481-1487. DOI: 10.1038/ismej.2014.235
[127] KHAN K S, JOERGENSEN R G. Stoichiometry of the soil microbial biomass in response to amendments with varying C/N/P/S ratios [J]. Biology and Fertility of Soils, 2019, 55: 265-274. DOI: 10.1007/s00374-019-01346-x
[128] SILVA-SANCHEZ A, SOARES M, ROUSK J. Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality [J]. Soil Biology and Biochemistry, 2019, 134: 25-35. DOI: 10.1016/j.soilbio.2019.03.008
[129] FANG Y Y, NAZARIES L, SINGH B K, et al. Microbial mechanisms of carbon priming effects revealed during the interaction of crop residue and nutrient inputs in contrasting soils [J]. Global Change Biology, 2018, 24: 2775-2790. DOI: 10.1111/gcb.14154
[130] LI Tianpeng, WANG Ruzhen, CAI Jiangping, et al. Enhanced carbon acquisition and use efficiency alleviate microbial carbon relative to nitrogen limitation under soil acidification [J]. Ecological Processes, 2021, 10(1): 32. DOI: 10.1186/s13717-021-00309-1
[131] LUO R Y, KUZYAKOV Y, LIU D Y, et al. Nutrient addition reduces carbon sequestration in a Tibetan grassland soil: Disentangling microbial and physical controls [J]. Soil Biology and Biochemistry, 2020, 144: 107764. DOI: 10.1016/j.soilbio.2020.107764
[132] JONES D L, COOLEDGE E C, HOYLE F C, et al. pH and exchangeable aluminum are major regulators of microbial energy flow and carbon use efficiency in soil microbial communities [J]. Soil Biology and Biochemistry, 2019, 138: 107584. DOI: 10.1016/j.soilbio.2019.107584
[133] FIERER N, BRADFORD M A, JACKSON R B. Toward an ecological classification of soil bacteria [J]. Ecology, 2007, 88(6): 1354-1364. DOI: 10.2307/27651243
[134] ELSER J J, DOBBERFUHL D R, MACKAY N A, et al. Organism size, life history, and N:P stoichiometry [J]. Bioscience, 1996, 46(9): 674-684. DOI: 10.2307/1312897
[135] ELSER J J, STERNER R W, GOROKHOVA E, et al. Biological stoichiometry from genes to ecosystems [J]. Ecology Letters, 2000, 3: 540-550. DOI: 10.1111/j.1461-0248.2000.00185.x
[136] FINN D, PAGE K, CATTON K, et al. Effect of added nitrogen on plant litter decomposition depends on initial soil carbon and nitrogen stoichiometry [J]. Soil Biology and Biochemistry, 2015, 91: 160-168. DOI: 10.1016/j.soilbio.2015.09.001
[137] XIAO Qiong, HUANG Yaping, WU Lei, et al. Long-term manuring increases microbial carbon use efficiency and mitigates priming effect via alleviated soil acidification and resource limitation [J]. Biology and Fertility of Soils, 2021, 57(7): 925-934. DOI: 10.1007/s00374-021-01583-z
[138] MIAO Yuncai, NIU Yuhui, LUO Ruyi, et al. Lower microbial carbon use efficiency reduces cellulose-derived carbon retention in soils amended with compost versus mineral fertilizers [J]. Soil Biology and Biochemistry, 2021, 156: 108227. DOI: 10.1016/j.soilbio.2021.108227
[139] LI J Q, YAN D, PENDALL E, et al. Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions [J]. Soil Biology and Biochemistry, 2018, 126: 82-90. DOI: 10.1016/j.soilbio.2018.08.015
[140] SCHINDLBACHER A, SCHNECKER J, TAKRITI M, et al. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations [J]. Global Change Biology, 2015, 21: 4265-4277. DOI: 10.1111/gcb.12996
[141] WANG Chao, QU Lingrui, YANG Liuming, et al. Large-scale importance of microbial carbon use efficiency and necromass to soil organic carbon [J]. Global Change Biology, 2021, 27: 2039-2048. DOI: 10.1111/gcb.15550
[142] KIRSCHBAUM M U F. The temperature dependence of soil organic matter decomposition, and the effect of glo