参考文献/References:
[1] VERSCHUYL J, RIFFELL S, MILLER D, et al. Biodiversity response to intensive biomass production from forest thinning in North American forests-A meta-analysis [J]. Forest Ecology and Management, 2011, 261: 221-232. DOI: 10.1016/j.foreco.2010.10.010
[2] 宋启亮,董希斌,李芝茹. 不同改造方式对大兴安岭3种类型低质林生物多样性的影响[J]. 东北林业大学学报,2012,40(4): 85-89. [SONG Qiliang, DONG Xibin, LI Zhiru. Effects of different transformation measures on biodiversity of three types of low-quality forest stands in Great Xing'an Mountains [J]. Journal of Northeast Forestry University, 2012, 40(4): 85-89] DOI: 10.3969/j.issn.1000-5382.2012.04.021
[3] 杨育林,李贤伟,周义贵,等. 林窗式疏伐对川中丘陵区柏木人工林生长和植物多样性的影响[J]. 应用与环境生物学报,2014, 20(6): 971-977. [YANG Yulin, LI Xianwei, ZHOU Yigui, et al. Effects of gap thinning on growth and diversity of a cypress plantation in the hilly region of central Sichuan [J]. Chinese Journal of Applied and Environmental Biology, 2014, 20(6): 971-977] DOI: 10.3724/SP.J.1145.2014.05004
[4] 陈绍栓,许建伟,吴载璋,等. 不同强度疏伐改造对马尾松林分水源涵养功能时空格局的影响[J]. 生态学报,2017, 37(20): 6753-6760. [CHEN Shaoshuan, XU Jianwei, WU Zaizhang, et al. Effects of different thinning intensities on temporal and spatial patterns of water conservation of Pinus massoniana [J]. Acta Ecologica Sinica, 2017, 37(20): 6753-6760] DOI: 10.5846/stxb201608081628
[5] DEL CAMPO A D, GONZÁLEZ-SANCHIS M, MOLINA A J, et al. Effectiveness of water-oriented thinning in two semiarid forests: The redistribution of increased net rainfall into soil water, drainage and runoff [J]. Forest Ecology and Management, 2019, 438: 163-175. DOI: 10.1016/j.foreco.2019.02.020
[6] MOLINA A J, GONZÁLEZ-SANCHIS M, BIEL C, et al. Ecohydrological turnover in overstocked Aleppo pine plantations: Does the effect of thinning, in relation to water, persist at the mid-term? [J]. Forest Ecology and Management, 2021, 483: 118781. DOI: 10.1016/j.foreco.2020.118781
[7] 李平,李凤汀,范川,等. 川中丘陵区柏木低效林改造模式植物多样性对土壤有机碳的影响[J]. 生态学报,2015, 35(8): 2667-2675. [LI Ping, LI Fengting, FAN Chuan, et al. Effects of plant diversity on soil organic carbon under different reconstructing patterns in low efficiency stands of Cuprssus funebris in the hilly region of central Sichuan [J]. Acta Ecologica Sinica, 2015, 35(8): 2667-2675] DOI: 10.5846/stxb201307181913
[8] LIN Wanrou, WANG Pihan, CHEN Wencheng, et al. Responses of soil fungal populations and communities to the thinning of Cryptomeria Japonica forests [J]. Microbes and Environments, 2016, 31(1): 19-26. DOI: 10.1264/jsme2.ME15127
[9] KIM S J, LI G L, HAN S H, et al. Microbial biomass and enzymatic responses to temperate oak and larch forest thinning: Influential factors for the site-specific changes [J]. Science of the Total Environment, 2019, 651: 2068-2079. DOI: 10.1016/j.scitotenv.2018.10.153
[10] BEVER J D. Soil community feedback and the coexistence of competitors: Conceptual frameworks and empirical tests [J]. New Phytologist, 2003, 157: 465-473. DOI: 10.1046/j.1469-8137.2003.00714.x
[11] 王成,庞学勇,包维楷. 低强度林窗式疏伐对云杉人工纯林地表微气候和土壤养分的短期影响[J]. 应用生态学报,2010, 21(3): 541-548. [WANG Cheng, PANG Xueyong, BAO Weikai. Short term effects of low intensity thinning simulated by gap on ground microclimate and soil nutrients of pure spruce plantation [J]. Chinese Journal of Applied Ecology, 2010, 21(3): 541-548]
[12] WU Ran, CHENG Xiaoqin, HAN Hairong. The effect of forest thinning on soil microbial community structure and function [J]. Forests, 2019, 10: 352. DOI: 10.3390/F10040352
[13] ZHOU Tao, WANG Chuankuan, ZHOU Zhenghu. Impacts of forest thinning on soil microbial community structure and extracellular enzyme activities: A global meta-analysis [J]. Soil Biology and Biochemistry, 2020, 149: 107915. DOI: 10.1016/j.soilbio.2020.107915
[14] 国家林业和草原局. 全国第四次大熊猫调查报告[M]. 北京:科学出版社,2021:24. [National Forestry and Grassland Administration. The 4th national survey report on giant panda in China [M]. Beijing: Science Press, 2021: 24]
[15] 高新宇,刘阳,刘定震,等. 秦岭大熊猫冬春季节对巴山木竹竹林生长指标的选择[J]. 动物学研究,2006, 27(2): 157-162. [GAO Xinyu, LIU Yang, LIU Dingzhen, et al. Analysis on the growth of bamboo species Bashania fargesii selection of giant pandas in Qinling Mountains [J]. Zoological Research, 2006, 27(2): 157-162] DOI: 10.3321/j.issn:0254-5853.2006.02.005
[16] YU Guangzhi, JIANG Zhigang, ZHAO Zhilong, et al. Feeding habitat of giant pandas(Ailuropoda melanoleuca): Why do they prefer bamboo patch edges? [J]. Journal of Zoology, 2003, 261: 307-312. DOI: 10.1017/S0952836903004242
[17] CHEN Shengyun, ZHAO Qian, LIU Wenjie, et al. Effects of freeze-thaw cycles on soil N2O concentration and flux in the permafrost regions of the Qinghai-Tibetan Plateau [J]. Sciences in Cold and Arid Regions, 2018, 10(1): 69-79. DOI: 10.3724/SP.J.1226.2018.00069
[18] MORI H, MARUYAMA F, KATO H, et al. Design and experimental application of a novel non-degenerate universal primer set that amplifies prokaryotic 16S rRNA genes with a low possibility to amplify eukaryotic rRNA Genes [J]. DNA Research, 2014, 21: 217-227. DOI: 10.1093/dnares/dst052
[19] BOLGER A M, LOHSE M, USADEL B. Trimmomatic: A flexible trimmer for Illumina sequence data [J]. Bioinformatics, 2014, 30(15): 2114-2120. DOI: 10.1093/bioinformatics/btu170
[20] MAGOC T, SALZBERG S L. FLASH: Fast length adjustment of short reads to improve genome assemblies [J]. Bioinformatics, 2011, 27(21): 2957-2963. DOI: 10.1093/bioinformatics/btr507
[21] EDGAR R C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads [J]. Nature Methods, 2013, 10(10): 996-998. DOI: 10.1038/NMETH.2604
[22] QUAST C, PRUESSE E, YILMAZ P, et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools [J]. Nucleic Acids Research, 2013, 41: D590-D596. DOI: 10.1093/nar/gks1219
[23] CAPORASO J G, KUCZYNSKI J, STOMBAUGH J, et al. QIIME allows analysis of high-throughput community sequencing data [J]. Nature Methods, 2010, 7(5): 335-336. DOI: 10.1038/NMETH.F.303
[24] SEGATA N, IZARD J, WALDRON L, et al. Metagenomic biomarker discovery and explanation [J]. Genome Biology, 2011, 12: R60. DOI: 10.1186/gb-2011-12-6-r60
[25] GIUGGIOLA A, OGEE J, RIGLING A, et al. Improvement of water and light availability after thinning at a xeric site: Which matters more? A dual isotope approach [J]. New Phytologist, 2016, 210: 108-121. DOI: 10.1111/nph.13748
[26] SOHN J A, SAHA S, BAUHUS J. Potential of forest thinning to mitigate drought stress: A meta-analysis [J]. Forest Ecology and Management, 2016, 380: 261-273. DOI: 10.1016/j.foreco.2016.07.046
[27] CHEN Xinli, WANG Dong, CHEN Xin, et al. Soil microbial functional diversity and biomass as affected by different thinning intensities in a Chinese fir plantation [J]. Applied Soil Ecology, 2015, 92: 35-44. DOI: 10.1016/j.apsoil.2015.01.018
[28] BARG A K, EDMONDS R L. Influence of partial cutting on site microclimate, soil nitrogen dynamics, and microbial biomass in Douglas-fir stands in western Washington [J]. Canadian Journal of Forest Research, 1999, 29: 705-713. DOI: 10.1139/x99-045
[29] CHAPARRO J M, BADRI D V, VIVANCO J M. Rhizosphere microbiome assemblage is affected by plant development [J]. The ISME Journal, 2014, 8: 790-803. DOI: 10.1038/ismej.2013.196
[30] XIONG Chao, ZHU Yongguan, WANG Juntao, et al. Host selection shapes crop microbiome assembly and network complexity [J]. New Phytologist, 2020, 229: 1091-1104. DOI: 10.1111/nph.16890
[31] WARD N L, CHALLACOMBE J F, JANSSEN P H, et al. Three genomes from the phylum Acidobacteria provide insight into the lifestyles of these microorganisms in soils [J]. Applied and Environmental Microbiology, 2009, 75(7): 2046-2056. DOI:10.1128/AEM.02294-08
[32] 杨安娜,陆云峰,张俊红,等. 杉木人工林土壤养分及酸杆菌群落结构变化[J]. 林业科学, 2019,55(1): 119-127. [YANG Anna, LU Yunfeng, ZHANG Junhong, et al. Changes in soil nutrients and Acidobacteria community structure in Cunninghamia lanceolata plantations [J]. Scientia Silvae Sinicae, 2019, 55(1): 119-127] DOI: 10.11707/j.1001-7488.20190114
[33] JONES R T, ROBESON M S, LAUBER C L, et al. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses [J]. The ISME Journal, 2009, 3: 442-453. DOI: 10.1038/ismej.2008.127
[34] DAIMS H, LÜCKER S, WAGNER M, et al. A new perspective on microbes formerly known as nitrite-oxidizing bacteria [J]. Trends in Microbiology, 2016, 9: 699-712. DOI: 10.1016/j.tim.2016.05.004
[35] SPEIRS L B M, RICE D T F, PETROVSKI S, et al. The phylogeny, biodiversity, and ecology of the Chloroflexi in activated sludge [J]. Frontiers in Microbiology, 2019, 10: 2015. DOI: 10.3389/fmicb.2019.02015
[36] CURTIN D, CAMPBELL C A, JALIL A. Effects of acidity on mineralization: pH-dependence of organic matter mineralization in weakly acidic soils [J]. Soil Biology and Biochemistry, 1998, 30(1): 57-64. DOI: 10.1016/s0038-0717(97)00094-1
[37] ROUSK J, BAATH E, BROOKES P C, et al. Soil bacterial and fungal communities across a pH gradient in an arable soil [J]. The ISME Journal, 2010, 4: 1340-1351. DOI: 10.1038/ismej.2010.58
[38] PHILIPPOT L, SPOR A, HENAULT C, et al. Loss in microbial diversity affects nitrogen cycling in soil [J]. The ISME Journal, 2013, 7: 1609-1619. DOI: 10.1038/ismej.2013.34
[39] BAHRAM M, NETHERWAY T, HILDEBRAND F, et al. Plant nutrient-acquisition strategies drive topsoil microbiome structure and function [J]. New Phytologist, 2020, 227:1189-1199. DOI: 10.1111/nph.16598
[40] LANGE M, EISENHAUER N, SIERRA C A, et al. Plant diversity increases soil microbial activity and soil carbon storage [J]. Nature Communications, 2015, 6: 6707. DOI: 10.1038/ncomms7707