参考文献/References:
[1] 沈仁芳, 赵学强. 土壤微生物在植物获得养分中的作用[J]. 生态学报, 2015, 35(20): 6584-6591. [SHEN Renfang, ZHAO Xueqiang. Role of soil microbes in the acquisition of nutrients by plants [J]. Acta Ecological Sinica, 2015, 35(20): 6584-6591] DOI: 10.5846 /stxb201506051140
[2] CHENG Xiaoyu, YUN Yuan, WANG Hongmei, et al. Contrasting bacterial communities and their assembly processes in karst soils under different land use [J]. Science of the Total Environment, 2021, 751: 142263. DOI: 10.1016/j.scitotenv.2020.142263
[3] COLEMAN D C, CALLAHAM M A, CROSSLEY D A. Fundamentals of soil ecology [M]. San Diego: Academic Press, 2018.
[4] 张雅茜, 方晰, 冼应男, 等.亚热带区 4 种林地土壤微生物生物量碳氮磷及酶活性特征[J]. 生态学报, 2019, 39(14): 5326-5338. [ZHANG Yaqian,FANG Xi,XIAN Yingnan,et al.Characteristics of soil microbial biomass carbon, nitrogen,phosphorus and enzyme activity in four subtropical forests,China [J].Acta Ecologica Sinica, 2019, 39(14): 5326-5338] DOI: 10.5846 /stxb201809081925
[5] JIANG Cong, ZHU Biao, ZENG Hui. Soil extracellular enzyme stoichiometry reflects the unique habitat of karst tiankeng and helps to alleviate the P-limitation of soil microbes [J]. Ecological Indicators, 2022, 144: 109552. DOI: 10.1016/j.ecolind.2022.109552
[6] SOONG J L, FUCHSLUEGER L, MARAÑON-JIMENEZ S, et al. Microbial carbon limitation: The need for integrating microorganisms into our understanding of ecosystem carbon cycling [J]. Global Change Biology, 2020, 26: 1953-1961. DOI: 10.1111/gcb.14962
[7] SINSABAUGH R L, HILL B H, FOLLSTAD SHAH J J. Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment [J]. Nature, 2009, 462: 795-798. DOI: 10.1038/nature08632
[8] 郭银花, 赵洪涛, 高雨, 等. 山西太岳山油松林无机氮添加对土壤微生物养分限制类型的影响[J]. 应用与环境生物学报, 2022, 28(1): 137-144. [GUO Yinhua, ZHAO Hongtao, GAO Yu, et al. Effect of inorganic nitrogen addition on soil microbial nutrient requirement strategy in the Pinus tabuliformis forest in Taiyue Mountain, Shanxi province [J]. Chinese Journal of Applied Environment Biology, 2022, 28(1): 137-144] DOI: 10.19675/j.cnki.1006-687x.2020.10054
[9] YAN Yuchun, WANG Chu, ZHANG Jingmin, et al. Response of soil microbial biomass C, N, and P and microbial quotient to agriculture and agricultural abandonment in a meadow steppe of northeast China [J]. Soil and Tillage Research, 2022, 223: 105475. DOI: 10.1016/j.still.2022.105475
[10] TIWARI S, SINGH C, BOUDH S, et al. Land use change: A key ecological disturbance declines soil microbial biomass in dry tropical uplands [J]. Journal of Environmental Management, 2019, 242: 1-10. DOI: 10.1016/j.jenvman.2019.04.052
[11] MENDES L W, DE LIMA BROSSI M J, KURAMAE E E, et al. Land-use system shapes soil bacterial communities in southeastern Amazon region [J]. Applied Soil Ecology, 2015, 95: 151-160. DOI: 10.1016/j.apsoil.2015.06.005
[12] CHEN Hao, LI Dejun, MAO Qinggong, et al. Resource limitation of soil microbes in karst ecosystems [J]. Science of the Total Environment, 2019, 650: 241-248. DOI: 10.1016/j.scitotenv.2018.09.036
[13] 王克林, 岳跃民, 陈洪松, 等. 喀斯特石漠化综合治理及其区域恢复效应[J]. 生态学报, 2019, 39(20): 7432-7440. [WANG Kelin, YUE Yuemin, CHEN Hongsong, et al. The comprehensive treatment of karst rocky desertification and its regional restoration effects [J]. Acta Ecologica Sinica, 2019, 39(20): 7432-7440] DOI: 10.5846/stxb201909051849
[14] WANG Kelin, ZHANG Chunhua, CHEN Hongsong, et al. Karst landscapes of China: Patterns, ecosystem processes and services [J]. Landscape Ecology, 2019, 34: 2743-2763. DOI: 10.1007/s10980-019-00912-w
[15] 金章利, 刘高鹏, 周明涛, 等. 喀斯特山地草地土壤酶活性及土壤微生物碳代谢活性研究[J]. 水土保持研究, 2020, 27(3): 37-44.[JIN Zhangli, LIU Gaopeng, ZHOU Mingtao, et al. Soil enzyme activity and microbial carbon metabolism along an altitude gradient in grasslands of karst mountain [J]. Research of Soil and Water Conservation, 2020, 27(3): 37-44] DOI: 10.13869/j.cnki.rswc.2020.03.006
[16] 吴求生, 龙健, 李娟, 等. 茂兰喀斯特森林小生境类型对土壤微生物群落组成的影响[J]. 生态学报, 2019, 39(3): 1009-1018. [WU Qiusheng, LONG Jian, LI Juan, et al. Effects of different microhabitat types on soil microbial community composition in the Maolan Karst Forest in southwest China [J]. Acta Ecologica Sinica, 2019, 39(3): 1009-1018] DOI: 10.5846 /stxb201801110084
[17] 杨泽良, 任建行, 况园园, 等. 桂西北喀斯特不同植被演替阶段土壤微生物群落多样性[J]. 水土保持研究, 2019, 26(3): 185-191. [YANG Zeliang, REN Jianhang, KUANG Yuanyuan, et al. Dynamics of soil microbial communities along vegetation restoration gradient in karst area [J]. Research of Soil and Water Conservation, 2019, 26(3): 185-191] DOI: 10.13869/j.cnki.rswc.2019.03.027
[18] ZHAO Chang, LONG Jian, LIAO Hongkai, et al. Dynamics of soil microbial communities following vegetation succession in a karst mountain ecosystem, southwest China [J]. Scientific Reports, 2019, 9: 2160. DOI: 10.1038/s41598-018-36886-z
[19] 孙彩丽, 王艺伟, 王从军, 等. 喀斯特山区土地利用方式转变对土壤酶活性及其化学计量特征的影响[J]. 生态学报, 2021, 41(10): 4140-4149. [SUN Caili, WANG Yiwei, WANG Congjun, et al. Effects of land use conversion on soil extracellular enzyme activity and its stoichiometric characteristics in karst mountainous areas [J]. Acta Ecological Sinica, 2021, 41(10): 4140-4149] DOI: 10.5846/stxb202007161864
[20] CHEN Hao, LI Dejun, XIAO Kongcao, et al. Soil microbial processes and resource limitation in karst and non-karst forests [J]. Functional Ecology, 2018, 32: 1400-1409. DOI: 10.1111/1365-2435.13069
[21] ZHANG Yaohua, XU Xianli, LI Zhenwei, et al. Improvements in soil quality with vegetation succession in subtropical China karst [J]. Science of the Total Environment, 2021, 775: 145876. DOI: 10.1016/j.scitotenv.2021.145876
[22] LYU Maokui, NIE Yangyi, GIARDINA C P, et al. Litter quality and site characteristics interact to affect the response of priming effect to temperature in subtropical forests [J]. Functional Ecology, 2019, 33: 2226-2238. DOI: 10.1111/1365-2435.13428
[23] 白娥, 薛冰. 土地利用与土地覆盖变化对生态系统的影响[J]. 植物生态学报, 2020, 44(5): 543-552. [BAI Edith, XUE Bing. A review of influences of land use and land cover change on ecosystems [J]. Chinese Journal of Plant Ecology, 2020, 44(5): 543-552] DOI: 10.17521/cjpe.2020.0071
[24] CHEN Qiong, YANG Fan, CHENG Xiaoli. Effects of land use change type on soil microbial attributes and their controls: Data synthesis [J]. Ecological Indicators, 2022, 138: 108852. DOI: 10.1016/j.ecolind.2022.108852
[25] ZHANG Dan, ZHOU Zhonghao, ZHANG Bin, et al. The effects of agricultural management on selected soil properties of the arable soils in Tibet, China [J]. Catena, 2012, 93: 1-8. DOI: 10.1016/j.catena.2012.01.004
[26] 曹建华, 潘根兴, 袁道先. 不同植物凋落物对土壤有机碳淋失的影响及岩溶效应[J]. 第四纪研究, 2000, 20(4): 359-366. [CAO Jianhua, PAN Genxing, YUAN Daoxian. Influence of two litters on the soil organic carbon leachings and its karst effect [J]. Quaternary Sciences, 2000, 20(4): 359-366]
[27] YUN Yuan, WANG Hongmei, MAN Baiying, et al. The relationship between pH and bacterial communities in a single karst ecosystem and its implication for soil acidification [J]. Frontiers in Microbiology, 2016, 7: 1955. DOI: 10.3389/fmicb.2016.01955
[28] COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss [J]. Nature Geoscience, 2015, 8: 776-779. DOI: 10.1038/NGEO2520
[29] WANG Y, ZHANG J H, ZHANG Z H. Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope [J]. Soil and Tillage Research, 2015, 151: 82-92. DOI: 10.1016/j.still.2015.03.003
[30] FANG Xiangmin, WANG Qingli, ZHOU Wangming, et al. Land use effects on soil organic carbon, microbial biomass and microbial activity in Changbai Mountains of northeast China [J]. Chinese Geographical Science, 2014, 24: 297-306. DOI: 10.1007/s11769-014-0670-9
[31] 王成宝, 温美娟, 杨思存, 等. 耕作方式对灌耕灰钙土耕层物理性质和玉米产量的影响[J]. 干旱地区农业研究, 2022, 40(3): 170-177. [WANG Chengbao, WEN Meijuan, YANG Sicun, et al. Effects of different tillage practices on physical characteristics of irrigated sierozem soil and maize yield [J]. Agriculture Research in the Arid Areas, 2022, 40(3): 170-177] DOI: 10.7606 /j.issn.1000-7601.2022.03.21
[32] 颜晓元, 夏龙龙, 遆超普. 面向作物产量和环境双赢的氮肥施用策略[J]. 中国科学院院刊, 2018, 33(2): 177-183. [YAN Xiaoyuan, XIA Longlong, TI Chaopu. Win-win nitrogen management practices for improving crop yield and environmental sustainability [J]. Bulletin of Chinese Academy of Sciences, 2018, 33(2): 177-183] DOI: 10.16418/j.issn.1000-3045.2018.02.007
[33] XIAO Shuangshuang, YE Yingying, XIAO Dan, et al. Effects of tillage on soil N availability, aggregate size, and microbial biomass in a subtropical karst region [J]. Soil and Tillage Research, 2019, 192: 187-195. DOI: 10.1016/j.still.2019.05.006
[34] LIU Dong, HUANG Yimei, AN Shaoshan, et al. Soil physicochemical and microbial characteristics of contrasting land-use types along soil depth gradients [J]. Catena, 2018, 162: 345-353. DOI: 10.1016/j.catena.2017.10.028
[35] 王艳玲, 章永辉, 何园球. 红壤基质组分对磷吸持指数的影响[J]. 土壤学报, 2012, 49(3): 552-559. [WANG Yanling, ZHANG Yonghui, HE Yuanqiu. Effect of soil matrix components on phosphate sorption index in red soil [J]. Acta Pedologica Sinica, 2012, 49(3): 552-559] DOI: 10.11766/trxb201107140260
[36] WANG Chu, LI Linghao, YAN Yuchun, et al. Effects of cultivation and agricultural abandonment on soil carbon, nitrogen and phosphorus in a meadow steppe in eastern Inner Mongolia [J]. Agriculture, Ecosystems and Environment, 2021, 309: 107284. DOI: 10.1016/j.agee.2020.107284
[37] 吴秀芝, 刘秉儒, 阎欣, 等. 荒漠草地土壤微生物生物量和微生物熵对沙漠化的响应[J].应用生态学报, 2019, 30(8): 2691-2698. [WU Xiuzhi, LIU Bingru, YAN Xin, et al. Response of soil microbial biomass and microbial entropy to desertification in desert grassland [J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2691-2698] DOI: 10.13287/j.1001-9332.201908.009
[38] 夏捷, 陈胜, 吴一凡, 等. 种植竹荪后毛竹林土壤微生物生物量和微生物熵的动态变化[J]. 南京林业大学学报(自然科学版), 2022, 46(4): 127-134. [XIA Jie, CHEN Sheng, WU Yifan, et al. Dynamic changes of soil microbial biomass and microbial entropy after planting Dictyophora indusiata in Phyllostachys edulis forests [J]. Journal of Nanjing Forestry University(Natural Science Edition), 2022, 46(4): 127-134] DOI: 10.12302 /j.issn.1000-2006.202101018
[39] MALIK A A, PUISSANT J, BUCKERIDGE K M, et al. Land use driven change in soil pH affects microbial carbon cycling processes [J]. Nature Communications, 2018, 9: 1-10. DOI: 10.1038/s41467-018-05980-1
[40] HAGERTY S B, VAN GROENIGEN K J, ALLISON S D, et al. Accelerated microbial turnover but constant growth efficiency with warming in soil [J]. Nature Climate Change, 2014, 4: 903-906. DOI: 10.1038/NCLIMATE2361
[41] SCHIMEL J, BECERRA C A, BLANKINSHIP J. Estimating decay dynamics for enzyme activities in soils from different ecosystems [J]. Soil Biology and Biochemistry, 2017, 114: 5-11. DOI: 10.1016/j.soilbio.2017.06.023
[42] FENG Jiao, WU Junjun, ZHANG Qian, et al. Stimulation of nitrogen-hydrolyzing enzymes in soil aggregates mitigates nitrogen constraint for carbon sequestration following afforestation in subtropical China [J]. Soil Biology and Biochemistry, 2018, 123: 136-144. DOI: 10.1016/j.soilbio. 2018.05.013
[43] LI Jiabao, XIE Ting, ZHU He, et al. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem [J]. Geoderma, 2021, 404: 115376. DOI: 10.1016/j.geoderma.2021.115376
[44] ZHANG Qian, FENG Jiao, WU Junjun, et al. Variations in carbon-decomposition enzyme activities respond differently to land use change in central China [J]. Land Degradation Development, 2019, 30: 459-469. DOI: 10.1002/ldr.3240
[45] WANG Bing, XUE Sha, LIU Guobin, et al. Changes in soil nutrient and enzyme activities under different vegetations in the Loess Plateau area, northwest China [J]. Catena, 2012, 92: 186-195. DOI: 10.1016/j.catena.2011.12.004
[46] RAIESI F, BEHESHTI A. Soil specific enzyme activity shows more clearly soil responses to paddy rice cultivation than absolute enzyme activity in primary forests of northwest Iran [J]. Applied Soil Ecology, 2014, 75: 63-70. DOI: 10.1016/j.apsoil.2013.10.012
[47] BOWLES T M, ACOSTA-MARTI'NEZ V, CALDERÓN F, et al. Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape [J]. Soil Biology and Biochemistry, 2014, 68: 252-262. DOI: 10.1016/j.soilbio.2013.10.004
[48] GARCIA-FRANCO N, MARTÍNEZ-MENA M, GOBERNA M, et al. Changes in soil aggregation and microbial community structure control carbon sequestration after afforestation of semiarid shrublands [J]. Soil Biology and Biochemistry, 2015, 87: 110-121. DOI: 10.1016/j.soilbio.2015.04.012
[49] CUSACK D F, SILVER W L, TORN M S, et al. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests [J]. Ecology, 2011, 92: 621-632. DOI: 10.1890/10-0459.1
[50] CUI Yongxing, FANG Linchuan, GUO Xiaobin, et al. Ecoenzymatic stoichiometry and microbial nutrient limitation in rhizosphere soil in the arid area of the northern Loess Plateau, China [J]. Soil Biology and Biochemistry, 2018, 116: 11-21. DOI: 10.1016/j.soilbio.2017.09.025