[1]李彦稷,李 浦,胡凯衡*.粘性泥石流龙头形态与阻力模型适用性研究[J].山地学报,2023,(2):216-227.[doi:10.16089/j.cnki.1008-2786.000743]
 LI Yanji,LI Pu,HU Kaiheng*.The Morphology of Viscous Debris Flow Head and Its Dynamic Resistance Model[J].Mountain Research,2023,(2):216-227.[doi:10.16089/j.cnki.1008-2786.000743]
点击复制

粘性泥石流龙头形态与阻力模型适用性研究
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第2期
页码:
216-227
栏目:
山地灾害
出版日期:
2023-03-25

文章信息/Info

Title:
The Morphology of Viscous Debris Flow Head and Its Dynamic Resistance Model
文章编号:
1008-2786-(2023)2-216-12
作者:
李彦稷12李 浦1胡凯衡1*
(1. 中国科学院、水利部成都山地灾害与环境研究所,成都 610229; 2. 中国科学院大学,北京 100049)
Author(s):
LI Yanji12LI Pu1HU Kaiheng1*
(1. Chengdu Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Resources, Chengdu 610299, China; 2. University of Chinese Academy of Sciences, Beijing 100049, China)
关键词:
粘性泥石流 阻力模型 龙头形态 Euler-Lagrange过程线 数值分析
Keywords:
viscous debris flow resistance model morphology of debris flow head euler-Lagrange coordinate systems numerical analysis
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000743
文献标志码:
A
摘要:
泥石流运动阻力是泥石流动力学的核心问题。泥石流内部多种流变类型和应力过程并存,目前各类阻力模型难以准确描述其运动阻力。本文基于原位监测与数值模拟方法,针对宾汉模型、湍屈模型、Voellmy模型、膨胀塑流模型四种不同的阻力模型,分析粘性泥石流龙头形态特征与阻力模型的适用性; 基于Euler(时间过程线)和Lagrange(空间过程线)两种视角,将数值计算结果与蒋家沟实测粘性泥石流龙头形态数据进行比较; 进一步改变粘性泥石流的密度和底床坡降,分析四种阻力模型计算结果对这两个基本参数的敏感性。结果表明:(1)综合考虑了固液两相混合流屈服摩阻、粘性应力和分散应力的膨胀塑流模型适用于描述粘性泥石流的运动阻力。(2)宾汉模型计算结果与实测数据相差较大,而膨胀塑流模型计算结果并未随密度变化产生差异,但受坡度影响较大,与实测数据较为吻合; 湍屈模型、Voellmy模型计算得到的速度几乎不受坡降变化影响,与实际泥石流不符,初步分析可能与湍流阻力项中残留层的计算受坡降影响有关。本文可为泥石流灾害风险评估和防治工程设计过程中的阻力模型选取提供参考。
Abstract:
To measure the resistance of a flowing debris flow to movement is the key issue of debris flow dynamics. A variety of rheological formations and stresses coexist in a flowing debris flow; there was no dynamic resistance model available to properly describe debris flow movement.
In this study, it conducted in-situ monitoring and numerical simulation to investigate the morphological features of viscous debris flow head and the applicability of four dynamic resistance models by introducing Bingham model, Turbulence-yield model, Voellmy model and Dilatant Plastic model into experiments, separately. From the perspective of both Euler(time process line)and Lagrange(spatial process line)coordinate systems, morphological values of viscous debris flows obtained by simulations were verified by observations at a well-known high prevalence area of debris flow, Jiangjia Gully, Yunan, China. Then it analyzed the sensitivity of two parameters, the density of viscous debris flow and gully bed slope, in the four dynamic resistance models by adjusting their preset values in the models.
Following result are obtained:(1)The dilatant plastic model, which integrated yield friction, viscous stress and dispersion stress of solid-liquid mixed flow, was suitable for describing the movement resistance of viscous debris flow.(2)There was a large discrepancy between the mathematical results from Bingham model and observations at Jiangjia Gully. The modelling by dilatant plastic model was justified by observations, in which simulation was not changed in values with the changes of the density of viscous debris flow, but it was altered by varied slopes. The velocities of debris flow calculated by Turbulence-yield model and Voellmy model kept steady as bed slope was reset in the model, which were inconsistent with general knowledge; this might be referred to the interference of bed slope in the calculation of residual layer in the turbulent resistance term of the model. This paper can provide a reference for risk assessment of debris flow disaster and the selection of resistance model in the design of control engineering.

参考文献/References:

[1] 胡凯衡,崔鹏,李浦. 泥石流动力学模型与数值模拟[J]. 自然杂志,2014,36(5):313-318. [HU Kaiheng, CUI Peng, LI Pu. Debris flow dynamic models and numerical computation [J]. Chinese Journal of Nature, 2014, 36(5): 313-318] DOI: 10.3969/j.issn.0253-9608.2014.05.001
[2] 崔鹏,唐金波,林鹏智. 泥石流运动阻力特性及其研究进展[J]. 四川大学学报(工程科学版), 2016, 48(3):1-11. [CUI Peng, TANG Jinbo, LIN Pengzhi. Research progress of resistance character of debris-flow [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(3): 1-11] DOI: 10.15961/j.jsuese.2016.03.001
[3] 苗绿, 马超, 吕立群. 蒋家沟泥石流阻力的无量纲参数分析[J]. 山地学报, 2021, 39(4): 515-523. [MIAO Lyu, MA Chao, LYU Liqun. Dimensionless analysis of resistance of debris flow in the Jiangjia Gully, China [J]. Mountain Research, 2021, 39(4): 515-523] DOI: 10.16089/j.cnki.1008-2786.000616
[4] 韦方强, 胡凯衡. 泥石流流速研究现状与发展方向[J]. 山地学报, 2009, 27(5):545-550. [WEI Fangqiang, HU Kaiheng. Review and trends on debris flow velocity research [J]. Mountain Research, 2009, 27(5): 545-550] DOI: 10.3969/j.issn.1008-2786.2009.05.005
[5] LI Pu, WANG Jiading, HU Kaiheng, et al. Experimental study of debris-flow entrainment over stepped-gradient beds incorporating bed sediment porosity [J]. Engineering Geology, 2020, 274: 105708. DOI: 10.1016/j.enggeo.2020.105708
[6] JOHNSON P C, JACKSON R. Frictional-collisional constitutive relations for granular materials, with application to plane shearing [J]. Journal of Fluid Mechanics, 1987, 176: 67-93. DOI: 10.1017/S0022112087000570
[7] TAKAHASHI T. Debris flow [J]. Annual Review of Fluid Mechanics, 1981, 13(1): 57-77. DOI: 10.1146/annurev.fl.13.010181.000421
[8] O'BRIEN J S, JULIEN P Y, FULLERTON W T. Two-dimensional water flood and mudflow simulation [J]. Journal of Hydraulic Engineering, 1993, 119(2): 244-261. DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)
[9] IVERSON R M. The physics of debris flows [J]. Reviews of Geophysics, 1997, 35(3): 245-296. DOI: 10.1029/97RG00426
[10] PUDASAINI S P. A general two‐phase debris flow model [J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F03010. DOI: 10.1029/2011JF002186
[11] PUDASAINI S P, FISCHER J T. A mechanical erosion model for two-phase mass flows [J]. International Journal of Multiphase Flow, 2020, 132: 103416. DOI: 10.1016/j.ijmultiphaseflow.2020.103416
[12] CHEN Qian, SONG Dongri, CHEN Xiaoqing, et al. Visco‐collisional scaling law of flow resistance and its application in debris‐flow mobility [J]. Journal of Geophysical Research: Earth Surface, 2023, 128(2): e2022JF006712. DOI: 10.1029/2022JF006712
[13] 周必凡. 粘性泥石流阻力和运动方程验证分析[J]. 山地学报, 1999, 17(1): 55-58. [ZHOU Bifan. Experiment and verification on equations of resistance and movement of viscous debris flows [J]. Mountain Research, 1999, 17(1): 55-58] DOI: 10.3969/j.issn.1008-2786.1999.01.012
[14] RICKENMANN D, KOCH T. Comparison of debris ?ow modelling approaches [G]// CHEN C L. Proceedings of the First International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. New York: American Society of Civil Engineers, 1997: 576-585.
[15] NAEF D, RICKENMANN D, RUTSCHMANN P, et al. Comparison of flow resistance relations for debris flows using a one-dimensional finite element simulation model [J]. Natural Hazards and Earth System Sciences, 2006, 6(1): 155-165. DOI: 10.5194/nhess-6-155-2006
[16] MEDINA V, HÜRLIMANN M, BATEMAN A. Application of FLATModel, a 2D finite volume code, to debris flows in the northeastern part of the Iberian Peninsula [J]. Landslides, 2008, 5(1): 127-142. DOI: 10.1007/s10346-007-0102-3
[17] 胡卸文, 钟沛林. 云南蒋家沟流域泥石流沟谷演变的非线性特征[J]. 长江流域资源与环境, 2002, 11(1): 94-97. [HU Xiewen, ZHONG Peilin. Debris flow gully distribution and its nonlinear property of evolution in Jiangjiagou area, Yunnan province [J]. Resources and Environment in the Yangtze Basin, 2002, 11(1): 94-97] DOI: 10.3969/j.issn.1004-8227.2002.01.021
[18] 唐邦兴, 杜榕桓, 康志成, 等. 我国泥石流研究[J]. 地理学报, 1980, 35(3): 259-264. [TANG Bangxing, DU Ronghuan, KANG Zhicheng, et al. Research on debris flow in China [J]. Acta Geographica Sinica, 1980, 35(3): 259-264] DOI: 10.11821/xb198003008
[19] 康志成,李焯芬,马蔼乃,等. 中国泥石流研究[M]. 北京: 科学出版社, 2004: 1-10. [KANG Zhicheng, LEE Chackfan, MA Ainai, et al. Research on debris flow in China [M]. Beijing: Science Press, 2004: 1-10]
[20] 吴积善, 田连权, 康志成, 等. 泥石流及其综合治理[M]. 北京: 科学出版社, 1993: 17-191. [WU Jishan, TIAN Lianquan, KANG Zhicheng, et al. Debris flow and its comprehensive control [M]. Beijing: Science Press, 1993: 17-191]
[21] 康志成, 崔鹏, 韦方强, 等. 东川泥石流观测研究站观测实验资料集(1961~1984)[M]. 北京: 科学出版社, 2006: 11-32. [KANG Zhicheng, CUI Peng, WEI Fangqiang, et al. Experimental data set of Dongchuan Debris Flow Observation and Research Station(1961-1984)[M]. Beijing: Science Press, 2006: 11-32]
[22] 胡凯衡, 康志成, 李泳. 阵性泥石流泥位过程线的Euler-Lagrange分析[J]. 泥沙研究, 2010(4): 6-10. [HU Kaiheng, KANG Zhicheng, LI Yong. Analyses on flow depth hydrograph of debris flow surges in Euler and Lagrange coordinate systems [J]. Journal of Sediment Research, 2010(4): 6-10]
[23] ZHANG S, CHEN J. Measurement of debris-flow surface characteristics through close-range photogrammetry [G]// RICKENMANN D, CHEN C L. Proceedings of the 3rd International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment. Rotterdam: Millpress, 2003: 775-784.
[24]谭维炎. 计算浅水动力学——有限体积法的应用[M]. 北京: 清华大学出版社,1998: 1-13. [TAN Weiyan. Calculation of shallow water dynamics: Application of finite volume method [M]. Beijing: Tsinghua University Press, 1998: 1-13]
[25] 杨红娟, 胡凯衡, 韦方强. 泥石流浆体流变参数的计算方法及其扩展性研究[J]. 水利学报, 2013, 44(11): 1338-1346. [YANG Hongjuan, HU Kaiheng, WEI Fangqiang. Methods for computing rheological parameters of debris-flow slurry and their extensibilities [J]. Journal of Hydraulic Engineering, 2013, 44(11): 1338-1346] DOI: 10.3969/j.issn.0559-9350.2013.11.011
[26] YANG Hongjuan, WEI Fangqiang, HU Kaiheng, et al. Effects of mud slurry on flow resistance of cohesionless coarse particles [J]. Powder Technology, 2017, 310: 1-7. DOI: 10.1016/j.powtec.2017.01.036
[27] 王士革. 云南浑水沟泥石流与大盈江河床演变[J]. 泥沙研究,2005(5): 28-34. [WANG Shige. Debris flow in Hunshui Gully and fluvial processes of Dayingjiang River in Yunnan province [J]. Journal of Sediment Research, 2005(5): 28-34] DOI: 10.16239/j.cnki.0468-155 x.2005.05.005
[28] 陈光曦, 王继康, 王林海. 泥石流防治[M]. 北京: 中国铁道出版社, 1983: 65-77. [CHEN Guangxi, WANG Jikang, WANG Linhai. Prevention and control of debris flow [M]. Beijing: China Railway Publishing House, 1983: 65-77]
[29] 康志成. 云南东川蒋家沟粘性泥石流流速分析[G]// 中国科学院兰州冰川冻土研究所. 中国科学院兰州冰川冻土研究所集刊(4). 北京: 科学出版社, 1985: 108-118. [KANG Zhicheng. Velocity analysis of viscous debris flow in Jiangjia Gully, Dongchuan, Yunnan [G]// Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Collection of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences(4). Beijing: Science Press. 1985: 108-118]
[30] 王文睿, 章书成, 王家义, 等. 西藏古乡沟冰川泥石流特征[G]// 中国科学院兰州冰川冻土研究所. 中国科学院兰州冰川冻土研究所集刊(4). 北京: 科学出版社. 1985: 19-35. [WANG Wenrui, ZHANG Shucheng, WANG Jiayi, et al. Properties of glacial debris flow in Guxianggou, Xizang [G]// Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences. Collection of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences(4). Beijing: Science Press. 1985: 19-35]
[31] REVELLINO P, HUNGR O, GUADAGNO F M, et al. Velocity and runout simulation of destructive debris flows and debris avalanches in pyroclastic deposits, Campania region, Italy [J]. Environmental Geology, 2004, 45: 295-311. DOI: 10.1007/s00254-003-0885-z
[32] BERGER C, MCARDELL B W, Schlunegger F. Direct measurement of channel erosion by debris flows, Illgraben, Switzerland [J]. Journal of Geophysical Research: Earth Surface, 2011, 116: F01002. DOI: 10.1029/2010JF001722
[33] MCCOY S W, KEAN J W, COE J A, et al. Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment [J]. Journal of Geophysical Research: Earth Surface, 2012, 117: F03016. DOI: 10.1029/2011JF002278
[34] ZANUTTIGH B, LAMBERTI A. Instability and surge development in debris flows [J]. Reviews of Geophysics, 2007, 45(3): RG3006. DOI: 10.1029/2005RG000175

相似文献/References:

[1]林雪平,游勇,柳金峰,等.动床条件下粘性泥石流沟道淤积实验研究[J].山地学报,2013,(03):327.
 LIN Xueping,YOU Yong,LIU Jinfeng,et al.Experimental Study on Channel Deposition of Viscous Debris Flow over Erodible Beds[J].Mountain Research,2013,(2):327.
[2]吴鑫,马东涛,杨敏,等.粘性泥石流坝后回淤比降的实验[J].山地学报,2013,(05):594.
 WU Xin,MA Dongtao,YANG Min.Experiment on Siltation Gradient of Viscous Debris Flow behind Gravity Checkdam[J].Mountain Research,2013,(2):594.
[3]柳金峰,游勇.粘性泥石流沟口回淤实验研究[J].山地学报,2011,(02):226.
 LIU Jinfeng,YOU Yong,et al.Experimental Study on Back Siltation in the Outlet of Viscous Debris Flow Channel[J].Mountain Research,2011,(2):226.
[4]赵惠林.成昆铁路北段粘性泥石流浆体流变参数的时间效应[J].山地学报,1990,(02):125.
[5]田连权.滇东北蒋家沟粘性泥石流堆积地貌[J].山地学报,1991,(03):185.
[6]田连权.沟道粘性泥石流堆积地貌的成因分类[J].山地学报,1994,(01):9.
[7]康志成.粘性泥石流稳定运动的力学分析[J].山地学报,1995,(02):128.
[8]祁龙.粘性泥石流阻力规律初探[J].山地学报,2000,(06):508.
[9]陈宁生,韩文喜,何杰,等.试析小流域土力类粘性泥石流的汇流过程——以滇东北大凹子沟为例[J].山地学报,2001,(05):418.
[10]王裕宜,詹钱登,李昌志,等.粘性泥石流应力应变特征的初步试验研究[J].山地学报,2002,(01):42.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-02-17; 修回日期(Accepted date):2023-04-21
基金项目(Foundation item): 国家自然科学基金项目(41371039; 91747207); 中国国家铁路集团有限公司科技研究开发计划课题(K2019G006); 陕西省自然科学基金青年基金项目(2021JQ-452)。[Natiaonal Natural Science Foundation of China(41371039; 91747207); Science and Technology Research and Development Program of China National Railway Group Co., LTD(K2019G006); Natural Science Foundation of Shanxi Province(2021JQ-452)]
作者简介(Biography): 李彦稷(1991-),女,博士研究生,主要研究方向:山地灾害防治工程。[LI Yanji(1991-), female, Ph. D. candidate, research on mountain hazard mitigation] E-mail: liyj@imde.ac.cn
*通讯作者(Corresponding author): 胡凯衡( 1975-),男,博士,研究员,主要研究方向:泥石流减灾理论与技术。[HU Kaiheng(1975-),male, Ph.D., professor, research on debris flow mechanism and mitigation] E-mail: khhu@imde.ac.cn
更新日期/Last Update: 2023-03-30