[1]谢湘平,王小军,谭懿飞,等.组合式格栅装置解决泥石流重力式拦砂坝的淤积问题[J].山地学报,2023,(2):228-242.[doi:10.16089/j.cnki.1008-2786.000744]
 XIE Xiangping,WANG Xiaojun,TAN Yifei,et al.Combined Metal Grid Device Designed to Desilting Gravity-Type Check Dam[J].Mountain Research,2023,(2):228-242.[doi:10.16089/j.cnki.1008-2786.000744]
点击复制

组合式格栅装置解决泥石流重力式拦砂坝的淤积问题
分享到:

《山地学报》[ISSN:1008-2186/CN:51-1516]

卷:
期数:
2023年第2期
页码:
228-242
栏目:
山地灾害
出版日期:
2023-03-25

文章信息/Info

Title:
Combined Metal Grid Device Designed to Desilting Gravity-Type Check Dam
文章编号:
1008-2786-(2023)2-228-15
作者:
谢湘平王小军谭懿飞张宇航黄宏鑫
(安阳工学院 土木与建筑工程学院,河南 安阳 455000)
Author(s):
XIE XiangpingWANG XiaojunTAN YifeiZHANG YuhangHUANG Hongxin
(Anyang Institute of Technology, Civil and Architecture engineering collage, Anyang 455000, Henan, China)
关键词:
泥石流 重力式拦砂坝 可持续利用 组合式格栅装置
Keywords:
debris flow gravity-type check dam sustainable utilization combined metal grid structure
分类号:
P642.23
DOI:
10.16089/j.cnki.1008-2786.000744
文献标志码:
A
摘要:
重力式拦砂坝因坝后淤积、库容不足,泥石流拦蓄作用失效,后续翻坝泥石流坠砸下游坝基,是拦砂坝损毁的主要成因之一。采用工程措施清淤调库,提高拦砂坝淤积满库后的可持续利用,是泥石流防治工程设计中面临的实际问题。本文通过理论分析、模型实验等研究方式分析了重力式拦砂坝的满库状态,设计了鱼脊型格栅装置或组合格栅装置,构建新型拦砂坝体系,研究了泥石流的调控效果。结果表明:(1)重力式拦砂坝库容内的泥沙堆积体形成的缓坡段与组合式格栅装置共同作用可实现对泥石流的调控; 在小流量的水石流情况下缓坡段的自然分选作用明显,而在流量较大的稀性泥石流条件下组合格栅的拦粗排细作用效果显著;(2)组合格栅的拦粗排细率与其作用的泥石流固体物质颗粒级配参数fc'呈先增大后减小的抛物线关系; 在水石流和泥石流条件下, fc'分别达到41.5%和36.9%时,拦粗排细率达到最大,即组合格栅的拦粗排细效果最优;(3)新型拦砂坝体系对泥石流泥沙总分离率与粗颗粒分离率均与形成泥石流的固体物质颗粒级配参数fc呈正比关系; 泥石流初始容重越大,调控后容重减小越明显。本研究为继续发挥满库后的重力式拦砂坝的泥石流调控作用提供了方案,具有重要的工程实践意义。
Abstract:
Gravity-type check dams built in the valleys with high occurrences of debris flow are inclined to fail in regulating of debris flows after heavy silting and decreasing storage capacity occurring in the dams; subsequent overturning of debris flows fall on the downstream dam foundation, quite often resulting in dam damages, even broken-down. The use of engineering measures to remove sediment and improve the sustainable use of check dams after full reservoir is a practical problem in the design of debris flow prevention and control engineering.
In this study, it investigated the performance of gravity-type check dams by theoretical analysis, model experiment and other research methods, and then a fish-ridge type metal grid structure(a herringbone water-sediment separation structure)or a combination metal grid structure was introduced to build up a new type of barrier system for regulation of debris flow, and the control effect of the system was examined.
We have the following results:(1)Gentle gravel slope behind dam formed by sediment accumulation because of debris flow transportation in the reservoir of check dam and the combined metal grid structure can jointly realize the regulation of debris flow.(2)Under entrainment of water-stone flow, evidently the gentle gravel slope had an active role in grain sorting and sieving, whereas under relatively larger erosion of watery debris flow, it was remarkable in the effect of trapping coarse debris and discharging fine particles.(3)The particle grade parameter(fc')of solid component in an occurrence of debris flow after being sorted and sieved by our advocated structure of combination metal grid described a parabolic curve of first increasing and then decreasing, and it stood for its drainage effect. In case subjected to water-stone flow and watery debris flow, fc' could reach 41.5% and 36.9% respectively, with a maximum drainage effect, the best function of trapping coarse debris and discharging fine particles. The separation efficiency for a bulk of debris flow sediment or its coarse component by a combined metal grid structure were directly proportional to the particle grade parameter(fc)of the original solid component of debris flow. The greater the initial bulk density of debris flow, the more obvious the reduction of bulk density after regulation was.
This study provides a scheme for further exploiting gravity-type check dam with full reservoir in regulating debris flow discharge. It is engineering practical.

参考文献/References:

[1] 陈宁生, 周海波, 卢阳, 等. 西南山区泥石流防治工程效益浅析[J]. 成都理工大学学报(自然科学版), 2013, 40(1): 50-58. [CHEN Ningsheng, ZHOU Haibo, LU Yang, et al. Analysis of benefits of debris flow control projects in southwest mountain areas of China [J]. Journal of Chengdu University of Technology(Science and Technology Edition), 2013, 40(1): 50-58] DOI: 10.3969/j.issn.1671-9727.2013.01.008
[2] 孙昊, 游勇, 柳金峰. 泥石流梁式格栅坝调控性能试验研究[J]. 铁道学报, 2019, 41(3): 163-168. [SUN Hao, YOU Yong, LIU Jinfeng. Experimental study on regulative performance of debris flow beam dam [J]. Journal of the China Railway Society, 2019, 41(3): 163-168] DOI: 10.3969/j.issn.1001-8360.2019.03.022
[3] 孙昊, 游勇, 柳金峰, 等. 泥石流梁式格栅坝泥砂粒径调节试验研究[J]. 防灾减灾工程学报, 2020, 40(6): 1037-1044. [SUN Hao, YOU Yong, LIU Jinfeng, et al. Experimental study on sediment size regulation of beam type debris flow check dam [J]. Journal of Disaster Prevention and Mitigation Engineering, 2020, 40(6): 1037-1044] DOI: 10.13409/j.cnki.jdpme.2020.06.024
[4] 刘曙亮, 游勇, 柳金峰, 等. 窗口坝拦截泥石流性能试验研究[J]. 长江科学院院报, 2015, 32(8): 40-44. [LIU Shuliang, YOU Yong, LIU Jinfeng, et al. Experimental study on performance of window-frame dam intercepting debris flow [J]. Journal of Yangtze River Scientific Research Institute, 2015, 32(8): 40-44] DOI: 10.3969/j.issn.1001-5485.2015.08.007
[5] 王小军, 陈晓清, 谢湘平, 等. 泥石流拦砂坝排泄孔优化及其数值模拟研究[J]. 科学技术与工程, 2016, 16(9): 28-34. [WANG Xiaojun, CHEN Xiaoqing, XIE Xiangping, et al. The optimization of debris flow check dam drainage hole and its numerical simulation research [J]. Science Technology and Engineering, 2016, 16(9): 28-34] DOI: 10.3969/j.issn.1671-1815.2016.09.005
[6] 陈华勇, 柳金峰, 赵万玉. 束流型拦砂坝溢流口及其关键参数确定[J]. 水科学进展, 2016, 27(5): 743-750. [CHEN Huayong, LIU Jinfeng, ZHAO Wanyu. Experimental investigation on the lateral contraction spillway and its key parameters determination [J]. Advances in Water Science, 2016, 27(5): 743-750] DOI: 10.14042/j.cnki.32.1309.2016.05.012
[7] 林雪平, 游勇, 柳金峰, 等. 泥石流拦砂坝溢流口过流能力实验研究[J]. 自然灾害学报, 2015, 24(1): 9-14. [LIN Xueping, YOU Yong, LIU Jinfeng, et al. Experimental study on discharge capacity of spillway of check dam for debris flow [J]. Journal of Natural Disasters, 2015, 24(1): 9-14] DOI: 10.13577/j.jnd.2015.0102
[8] 乔少南. 泥石流柔性网防护优化设计与应用[D]. 西安: 西北大学, 2020: 71-72. [QIAO Shaonan. Optimization design and application of debris flow flexible network [D]. Xi'an: Northwest University, 2020: 71-72]
[9] 陈晓清, 崔鹏, 游勇, 等. 汶川地震区大型泥石流工程防治体系规划方法探索[J]. 水利学报, 2013, 44(5): 586-593. [CHEN Xiaoqing, CUI Peng, YOU Yong, et al. Layout methods of control works preventing large scale debris flows in Wenchuan earthquake area [J]. Shui Li Xue Bao, 2013, 44(5): 586-593] DOI: 10.13243/j.cnki.slxb.2013.05.003
[10] 陈晓清, 游勇, 崔鹏, 等. 汶川地震区特大泥石流工程防治新技术探索[J]. 四川大学学报(工程科学版), 2013, 45(1): 14-22. [CHEN Xiaoqing, YOU Yong, CUI Peng, et al. New control methods for large debris flows in Wenchuan earthquake area [J]. Journal of Sichuan University(Engineering Science Edition), 2013, 45(1): 14-22] DOI: 10.15961/j.jsuese.2013.01.004
[11] XIE Tao, YANG Hongjuan, WEI Fangqiang, et al. A new water-sediment separation structure for debris flow defense and its model test [J]. Bulletin of Engineering Geology and the Environment, 2014, 73: 947-958. DOI: 10.1007/s10064-014-0585-9
[12] 谢涛, 谢湘平, 韦方强, 等. 鱼脊型泥石流水石分离结构适用性的模型试验研究[J]. 水利学报. 2014, 45(11): 1-9. [XIE Tao, XIE Xiangping, WEI Fangqiang, et al. Applicability experiment of herringbone water-sediment separation structure for debris flow prevention [J]. Shui Li Xue Bao, 2014, 45(11): 1-9] DOI: 10.13243/j.cnki.slxb.2014.11.000
[13] 谢涛, 韦方强, 杨红娟, 等. 鱼脊型泥石流水石分离结构的关键参数确定[J]. 山地学报, 2015, 33(1): 116-122. [XIE Tao, WEI Fangqiang, YANG Hongjuan, et al. Optimal value of structural parameters in a new water-sediment separation structure for debris flow defense [J]. Mountain Research, 2015, 33(1): 116-122] DOI: 10.16089/j.cnki.1008-2786.000016
[14] 谢湘平, 韦方强, 杨红娟, 等. 基于漂木分离效果的鱼脊型水石分离结构参数优化[J].四川大学学报(工程科学版), 2016, 48(1): 55-63. [XIE Xiangping, WEI Fangqiang, YANG Hongjuan, et al. Herringbone water-sediment separation structure parameters optimization based on the water-wood separation effect [J]. Journal of Sichuan University(Engineering Science Edition), 2016, 48(1): 55-63] DOI: 10.15961/j.jsuese.2016.01.009
[15] XIE Xiangping, WEI Fangqiang, WANG Xiaojun, et al. Determination of optimal grid opening width for herringbone water-sediment separation structures based on sediment separation efficiency [J]. Journal of Mountain Science, 2019, 16(3): 619-629. DOI: 10.1007/s11629-018-5038-7
[16] 谢湘平, 韦方强, 王小军, 等. 鱼脊型水石分离结构对泥石流的物质与能量调控效果试验研究[J]. 工程科学与技术, 2019, 51(5): 49-59. [XIE Xiangping, WEI Fangqiang, WANG Xiaojun, et al. Regulation effect of herringbone water-sediment separation structure on the substance and energy properties of debris flow [J]. Advanced Engineering Sciences, 2019, 51(5): 49-59] DOI: 10.15961/j.jsuese.201900131
[17] 吴佳俊, 杨兴国, 周宏伟, 等. 新型屋脊式拦砂坝拦挡输移性能试验研究[J]. 中国地质灾害与防治学报, 2018, 29(4): 85-90. [WU Jiajun, YANG Xingguo, ZHOU Hongwei, et al. Experimental study of preventing debris flow by weir type debris dam [J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(4): 85-90] DOI: 10.16031/j.cnki.issn.1003-8035.2018.04.12
[18] LIANG Yufeng, LIANG Chuan, ZHOU Hongwei, et al. New permeable structure for controlling debris flows in the Wenjiagou Gully [J]. Korean Society of Civil Engineers Journal of Civil Engineering, 2018, 22(5): 4293-4305. DOI: 10.1007/s12205-018-1038-y
[19] JIANG Rui, WU Jiajun, FEI Wenping, et al. Experimental study on the structural parameters of an optimized sloping roof grill barrier for the prevention of debris flows in Yanmen Gully [J]. Engineering Geology, 2020, 277(1): 105751. DOI: 10.1016/j.enggeo.2020.105751
[20] 高守义, 史正涛, 崔炳田. 马槽沟泥石流工程治理及效益分析[J]. 中国地质灾害与防治学报, 1998, 9(1): 135-137+139-141. [GAO Shouyi, SHI Zhengtao, CUI Bingtian. An approach on controlling works and their benefits of debris flow in Macaogou Gully, Wudu [J]. The Chinese Journal of Geological Hazard and Control, 1998, 9(1): 135-137+139-141] DOI: 10.16031/j.cnki.issn.1003-8035.1998.01.026
[21] 张勇, 陈宁生, 胡桂胜, 等. 城镇泥石流综合治理效果评估——以四川黑沙河沟泥石流工程为例[J]. 中国地质灾害与防治学报, 2018, 29(2): 9-15. [ZHANG Yong, CHEN Ningsheng, HU Guisheng, et al. Analysis on effectiveness of urban debris flow control works: A case study at Heishahe Gully [J]. The Chinese Journal of Geological Hazard and Control, 2018, 29(2): 9-15] DOI: 10.16031/j.cnki.issn.1003-8035.2018.02.02
[22] 张文涛. 泥石流防治岩土—生态工程综合治理效果分析与评价[D]. 北京: 中国科学院大学, 2021: 12-24. [ZHANG Wentao. Analysis and evaluation of comprehensive treatment effect of geotechnical and ecological engineering for debris flow [D]. Beijing: University of Chinese Academy of Sciences, 2021: 12-24]
[23] 周文兵, 柳金峰, 袁东, 等. 白龙江中游泥石流拦砂坝防治效果分析[J]. 长江科学院院报, 2019, 36(9): 64-70. [ZHOU Wenbing, LIU Jinfeng, YUAN Dong, et al. Control effect of check dams on debris flow in the midstream of Bailong River [J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(9): 64-70] DOI: 10.11988/ckyyb.20180205
[24] 亓星, 许强, 余斌, 等. 汶川震区文家沟泥石流治理工程效果分析[J]. 地质科技情报, 2016, 35(1): 161-165. [QI Xing, XU Qiang, YU Bin, et al. Treatment effects in Wenjia Gully, Wenchuan earthquake area [J]. Geological Science and Technology Information, 2016, 35(1): 161-165]
[25] 张文涛, 柳金峰, 游勇, 等. 泥石流岩土防治工程治理效果分析与评价——以四川汶川卧龙幸福沟为例[J]. 灾害学, 2021, 36(3): 208-214. [ZHANG Wentao, LIU Jinfeng, YOU Yong, et al. Analysis and evaluation of the treatment effect of the geotechnical engineering of debris flow: Case of Xingfu Gully in Wolong [J]. Journal of Catastrophology, 2021, 36(3): 208-214] DOI: 10. 3969 /j.issn.1000 -811X.2021.03.036
[26] 曾庆铭, 薛强, 徐继伟. 都江堰市龙池镇黄央沟泥石流特征与防治工程效果分析[J]. 西北地质, 2014, 47(3): 192-199. [ZENG Qingming, XUE Qiang, XU Jiwei. Analysis on the debris flow characteristics and effectiveness of prevention projects in Huangyang Gully in Longchi town of Dujiangyan city [J]. Northwestern Geology, 2014, 47(3): 192-199] DOI: 10.3969/j.issn.1009-6248.2014.03.025
[27] 潘华利, 欧国强, 黄江成. 泥石流坝后侵蚀坑内部边坡规律实验研究[J]. 泥沙研究, 2009(6): 1-5. [PAN Huali, OU Guoqiang, HUANG Jiangcheng. Experimental study on the interior slope of scour pit below debris flow sabo dams [J]. Journal of Sediment Research, 2009(6): 1-5] DOI: 10.16239/j.cnki.0468-155x.2009.06.002
[28] 周必凡, 李德基, 罗德富, 等. 泥石流防治指南[M]. 北京: 科学出版社, 1991: 2-4+133-134. [ZHOU Bifan, LI Deji, LUO Defu, et al. Guidelines for debris flow control [M]. Beijing: Science Press, 1991: 2-4+133-134]
[29] HUANG Runqiu, FAN Xuanmei. The landslide story [J]. Nature Geoscience, 2013, 6: 325-326. DOI: 10.1038/ngeo1806
[30] 胡卸文, 韩玫, 梁敬轩, 等. 汶川地震灾区泥石流若干关键问题[J]. 西南交通大学学报, 2016, 51(2): 331-340. [HU Xiewen, HAN Mei, LIANG Jingxuan, et al. Some key problems on debris flow in Wenchuan earthquake area [J]. Journal of Southwest Jiaotong University, 2016, 51(2): 331-340] DOI: 10.3969/j.issn.0258-2724.2016.02.012
[31] 吴鑫, 马东涛, 杨敏. 粘性泥石流坝后回淤比降的实验[J]. 山地学报, 2013, 31(5): 594-600. [WU Xin, MA Dongtao, YANG Min. Experiment on siltation gradient of viscous debris flow behind gravity check-dam [J]. Mountain Research, 2013, 31(5): 594-600] DOI: 10.16089/j.cnki.1008-2786.2013.05.012
[32] 赵静静, 崔佳慧, 关辉, 等. 黏性泥石流拦砂坝坝后回淤坡度试验[J]. 西南科技大学学报, 2018, 33(2): 37-40. [ZHAO Jingjing, CUI Jiahui, GUAN Hui, et al. Experimental study on the sedimentation gradient of viscous debris flow behind check dam [J]. Journal of Southwest University of Science and Technology, 2018, 33(2): 37-40] DOI: 10.3969/j.issn.1671-8755.2018.02.007
[33] 费祥俊, 舒安平. 泥石流运动机理与灾害防治[M]. 北京: 清华大学出版社, 2004: 22-34. [FEI Xiangjun, SHU Anping. Mechanism of debris flow movement and disaster prevention [M]. Beijing: Tsinghua University Press, 2004: 22-34]
[34] 崔鹏, 邓宏艳, 王成华, 等. 山地灾害[M]. 北京: 高等教育出版社, 2018: 208-219. [CUI Peng, DENG Hongyan, WANG Chenghua, et al. Mountain Hazards [M]. Beijing: Higher Education Press, 2018: 208-219]
[35] 余斌, 马煜, 吴雨夫. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究[J]. 工程地质学报, 2010, 18(6): 827-836. [YU Bin, MA Yu, WU Yufu. Investigation of severe debris flow hazards in Wenjia Gully of Sichuan province after the Wenchuan earthquake [J]. Journal of Engineering Geology, 2010, 18(6): 827-836] DOI: 10.3969/j.issn.1004-9665.2010.06.003
[36] 李文鑫, 王兆印, 王旭昭, 等. 汶川地震引发的次生山地灾害链及人工断链效果——以小岗剑泥石流沟为例 [J]. 山地学报, 2014, 32(3): 336-344. [LI Wenxin, WANG Zhaoyin, WANG Xuzhao, et al. Secondary mountain disaster chain induced by the Wenchuan earthquake and the result of chain-cutting engineering in the Xiaogangjian Gully [J]. Mountain Research, 2014, 32(3): 336-344] DOI: 10.16089/j.cnki.1008-2786.2014.03.009
[37] 陈宁生, 佘德彬. 基于弃渣综合利用的矿山泥石流灾害防治新模式——以冕宁盐井沟泸沽铁矿为例[J]. 山地学报, 2019, 37(1): 78-85. [CHEN Ningsheng, SHE Debin. A new approach to debris flow disaster control based on comprehensive utilization of waste slag: A case study of Lugu Iron Mine at the Yanjing Valley of Mianning county, Sichuan, China [J]. Mountain Research, 2019, 37(1): 78-85] DOI: 10.16089/j.cnki.1008-2786.000401
[38] 谢湘平. 基于粗颗粒调控效应的多级鱼脊型水石分离系统设计方法实验研究[D]. 北京: 中国科学院大学, 2017: 39-41. [XIE Xiangping. The control effect of multi-herringbone water-separation system to debris flow and its design method based on experimental research [D]. Beijing: University of Chinese Academy of Sciences, 2017: 39-41]

相似文献/References:

[1]蒋志林,朱静,常鸣,等.汶川地震区红椿沟泥石流形成物源量动态演化特征[J].山地学报,2014,(01):81.
 JIANG Zhilin,ZHU Jing,CHANG Ming,et al.Dynamic Evolution Characteristics of Hongchun Gully Source Area of Debris Flow in Wenchuan Earthquake Region[J].Mountain Research,2014,(2):81.
[2]常鸣,唐川,蒋志林,等.强震区都江堰市龙池镇泥石流物源的遥感动态演变[J].山地学报,2014,(01):89.
 CHANG Ming,TANG Chuan,JIANG Zhilin,et al.Dynamic Evolution Process of Sediment Supply for Debris Flow Occurrence in Longchi of Dujiangyan,Wenchuan Earthquake Area[J].Mountain Research,2014,(2):89.
[3]王 钧,欧国强,杨 顺,等.地貌信息熵在地震后泥石流危险性评价中的应用[J].山地学报,2013,(01):83.
 WANG Jun,OU Guoqiang,YANG Shun,et al.Applicability of Geomorphic Information Entropy in the Postearthquake Debris Flow Risk Assessment[J].Mountain Research,2013,(2):83.
[4]王东坡,何思明,葛胜锦,等.“9?07”彝良地震诱发次生山地灾害调查及减灾建议[J].山地学报,2013,(01):101.
 WANG Dongpo,HE Siming,GE Shengjin,et al.Mountain Hazards Induced by the Earthquake of Sep 07,2012 in Yiliang and the Suggestions of Disaster Reduction[J].Mountain Research,2013,(2):101.
[5]喻 武,万 丹,汪书丽,等.藏东南泥石流沉积区植物群落结构和物种多样性特征[J].山地学报,2013,(01):120.
 YU Wu,WAN Dan,WANG Shuli,et al.Community Structure and Species Diversity of Debris Flow Deposition Area in Southeast of Tibet,China[J].Mountain Research,2013,(2):120.
[6]崔鹏,陈晓清,张建强,等.“4·20”芦山7.0级地震次生山地灾害活动特征与趋势[J].山地学报,2013,(03):257.
 CUI Peng,CHEN Xiaoqing,ZHANG Jianqiang,et al.Activities and Tendency of Mountain Hazards Induced by the Ms7.0 Lushan Earthquake,April 20,2013[J].Mountain Research,2013,(2):257.
[7]邹强,崔鹏,杨伟,等.G318川藏公路段泥石流危险性评价[J].山地学报,2013,(03):342.
 ZOU Qiang,CUI Peng,YANG Wei.Hazard Assessment of Debris Flows along G318 Sichuan-Tibet Highway[J].Mountain Research,2013,(2):342.
[8]王根龙,张茂省,于国强,等.舟曲2010年“8·8”特大泥石流灾害致灾因素[J].山地学报,2013,(03):349.
 WANG Genlong,ZHANG Maosheng,YU Guoqiang,et al.Factor Analysis for Catastrophic Debris Flows on August 8,2010 in Zhouqu City of Gansu,China[J].Mountain Research,2013,(2):349.
[9]陈源井,余斌,朱渊,等.地震后泥石流临界雨量变化特征——以汶川地震区小岗剑沟为例[J].山地学报,2013,(03):356.
 CHEN Yuanjing,YU Bin,ZHU Yuan,et al.Characteristics of Critical Rainfall of Debris Flow after Earthquake——A Case Study of the Xiaogangjian Gully[J].Mountain Research,2013,(2):356.
[10]游勇,柳金峰,陈兴长,等.芦山“4·20”地震后宝兴县城打水沟泥石流发育趋势及防治方案[J].山地学报,2013,(04):495.
 YOU Yong,LIU Jinfeng,CHEN Xingzhang.The Potential Tendency and Mitigation Measures of Dashui Gully in Baoxing Coutny after Lushan“4?20”Earthquake of Schuan[J].Mountain Research,2013,(2):495.

备注/Memo

备注/Memo:
收稿日期(Received date): 2023-02-04; 改回日期(Accepted date):2023-04-18
基金项目(Foundation item): 国家自然科学青年基金(41907258); 安阳工学院博士科研启动基金(BSJ2019011); [National Natural Science Foundation of China(41907258); Doctoral Research Start-Up Fund of Anyang Institute of Technology( BSJ2019011)]
作者简介(Biography): 谢湘平(1987-),女, 博士, 讲师, 主要研究方向: 山地灾害防灾减灾。[XIE Xiangping, female, Ph.D., lecturer, research on theory and geohazard prevention and mitigation] E-mail: xxp_imde@ 163. Com
更新日期/Last Update: 2023-03-30